Author
Listed:
- Francesco Hoch
(Sapienza Università di Roma)
- Eugenio Caruccio
(Sapienza Università di Roma)
- Giovanni Rodari
(Sapienza Università di Roma)
- Tommaso Francalanci
(Sapienza Università di Roma)
- Alessia Suprano
(Sapienza Università di Roma)
- Taira Giordani
(Sapienza Università di Roma)
- Gonzalo Carvacho
(Sapienza Università di Roma)
- Nicolò Spagnolo
(Sapienza Università di Roma)
- Seid Koudia
(Quantum technologies lab)
- Massimiliano Proietti
(Quantum technologies lab)
- Carlo Liorni
(Quantum technologies lab)
- Filippo Cerocchi
(Cyber & Security Solutions Division)
- Riccardo Albiero
(Politecnico di Milano
Consiglio Nazionale delle Ricerche (IFN-CNR))
- Niki Giano
(Politecnico di Milano
Consiglio Nazionale delle Ricerche (IFN-CNR))
- Marco Gardina
(Consiglio Nazionale delle Ricerche (IFN-CNR))
- Francesco Ceccarelli
(Consiglio Nazionale delle Ricerche (IFN-CNR))
- Giacomo Corrielli
(Consiglio Nazionale delle Ricerche (IFN-CNR))
- Ulysse Chabaud
(INRIA)
- Roberto Osellame
(Consiglio Nazionale delle Ricerche (IFN-CNR))
- Massimiliano Dispenza
(Quantum technologies lab)
- Fabio Sciarrino
(Sapienza Università di Roma)
Abstract
The implementation of large-scale universal quantum computation represents a challenging and ambitious task on the road to quantum processing of information. In recent years, an intermediate approach has been pursued to demonstrate quantum computational advantage via non-universal computational models. A relevant example for photonic platforms has been provided by the Boson Sampling paradigm and its variants, which are known to be computationally hard while requiring at the same time only the manipulation of the generated photonic resources via linear optics and detection. Beside quantum computational advantage demonstrations, a promising direction towards possibly useful applications can be found in the field of quantum machine learning, considering the currently almost unexplored intermediate scenario between non-adaptive linear optics and universal photonic quantum computation. Here, we report the experimental implementation of quantum machine learning protocols by adding adaptivity via post-selection to a Boson Sampling platform based on universal programmable photonic circuits fabricated via femtosecond laser writing. Our experimental results demonstrate that Adaptive Boson Sampling is a viable route towards dimension-enhanced quantum machine learning with linear optical devices.
Suggested Citation
Francesco Hoch & Eugenio Caruccio & Giovanni Rodari & Tommaso Francalanci & Alessia Suprano & Taira Giordani & Gonzalo Carvacho & Nicolò Spagnolo & Seid Koudia & Massimiliano Proietti & Carlo Liorni &, 2025.
"Quantum machine learning with Adaptive Boson Sampling via post-selection,"
Nature Communications, Nature, vol. 16(1), pages 1-11, December.
Handle:
RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-55877-z
DOI: 10.1038/s41467-025-55877-z
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-55877-z. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.