IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-43481-y.html
   My bibliography  Save this article

The two-qubit singlet/triplet measurement is universal for quantum computing given only maximally-mixed initial states

Author

Listed:
  • Terry Rudolph

    (Imperial College London)

  • Shashank Soyuz Virmani

    (Brunel University London)

Abstract

In order to delineate which minimalistic physical primitives can enable the full power of universal quantum computing, it has been fruitful to consider various measurement based architectures which reduce or eliminate the use of coherent unitary evolution, and also involve operations that are physically natural. In this context previous works had shown that the triplet-singlet measurement of two qubit angular momentum (or equivalently two qubit exchange symmetry) yields the power of quantum computation given access to a few additional different single qubit states or gates. However, Freedman, Hastings and Shokrian-Zini1 recently proposed a remarkable conjecture, called the ‘STP=BQP’ conjecture, which states that the two-qubit singlet/triplet measurement is quantum computationally universal given only an initial ensemble of maximally mixed single qubits. In this work we prove this conjecture. This provides a method for quantum computing that is fully rotationally symmetric (i.e. reference frame independent), using primitives that are physically very-accessible, naturally resilient to certain forms of error, and provably the simplest possible.

Suggested Citation

  • Terry Rudolph & Shashank Soyuz Virmani, 2023. "The two-qubit singlet/triplet measurement is universal for quantum computing given only maximally-mixed initial states," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-43481-y
    DOI: 10.1038/s41467-023-43481-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-43481-y
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-43481-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Sara Bartolucci & Patrick Birchall & Hector Bombín & Hugo Cable & Chris Dawson & Mercedes Gimeno-Segovia & Eric Johnston & Konrad Kieling & Naomi Nickerson & Mihir Pant & Fernando Pastawski & Terry Ru, 2023. "Fusion-based quantum computation," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shayan Majidy, 2024. "Noncommuting charges can remove non-stationary quantum many-body dynamics," Nature Communications, Nature, vol. 15(1), pages 1-7, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Axel M. Eriksson & Théo Sépulcre & Mikael Kervinen & Timo Hillmann & Marina Kudra & Simon Dupouy & Yong Lu & Maryam Khanahmadi & Jiaying Yang & Claudia Castillo-Moreno & Per Delsing & Simone Gasparine, 2024. "Universal control of a bosonic mode via drive-activated native cubic interactions," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    2. Yijian Meng & Ming Lai Chan & Rasmus B. Nielsen & Martin H. Appel & Zhe Liu & Ying Wang & Nikolai Bart & Andreas D. Wieck & Arne Ludwig & Leonardo Midolo & Alexey Tiranov & Anders S. Sørensen & Peter , 2024. "Deterministic photon source of genuine three-qubit entanglement," Nature Communications, Nature, vol. 15(1), pages 1-7, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-43481-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.