A compliant metastructure design with reconfigurability up to six degrees of freedom
Author
Abstract
Suggested Citation
DOI: 10.1038/s41467-024-55591-2
Download full text from publisher
References listed on IDEAS
- Patrick Slade & Mykel J. Kochenderfer & Scott L. Delp & Steven H. Collins, 2022. "Personalizing exoskeleton assistance while walking in the real world," Nature, Nature, vol. 610(7931), pages 277-282, October.
- Steven H. Collins & M. Bruce Wiggin & Gregory S. Sawicki, 2015. "Reducing the energy cost of human walking using an unpowered exoskeleton," Nature, Nature, vol. 522(7555), pages 212-215, June.
- Yifan Wang & Liuchi Li & Douglas Hofmann & José E. Andrade & Chiara Daraio, 2021. "Structured fabrics with tunable mechanical properties," Nature, Nature, vol. 596(7871), pages 238-243, August.
- Tie Mei & Zhiqiang Meng & Kejie Zhao & Chang Qing Chen, 2021. "A mechanical metamaterial with reprogrammable logical functions," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
- Tian Chen & Mark Pauly & Pedro M. Reis, 2021. "A reprogrammable mechanical metamaterial with stable memory," Nature, Nature, vol. 589(7842), pages 386-390, January.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Lei Wu & Damiano Pasini, 2024. "Zero modes activation to reconcile floppiness, rigidity, and multistability into an all-in-one class of reprogrammable metamaterials," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
- Xinchen Ni & Haiwen Luan & Jin-Tae Kim & Sam I. Rogge & Yun Bai & Jean Won Kwak & Shangliangzi Liu & Da Som Yang & Shuo Li & Shupeng Li & Zhengwei Li & Yamin Zhang & Changsheng Wu & Xiaoyue Ni & Yongg, 2022. "Soft shape-programmable surfaces by fast electromagnetic actuation of liquid metal networks," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
- Xin Yang & Zhihe Zhang & Mengwei Xu & Shuxun Li & Yuanhong Zhang & Xue-Feng Zhu & Xiaoping Ouyang & Andrea Alù, 2024. "Digital non-Foster-inspired electronics for broadband impedance matching," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
- Yaohui Wang & Haitao Ye & Jian He & Qi Ge & Yi Xiong, 2024. "Electrothermally controlled origami fabricated by 4D printing of continuous fiber-reinforced composites," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
- Neng Xia & Dongdong Jin & Chengfeng Pan & Jiachen Zhang & Zhengxin Yang & Lin Su & Jinsheng Zhao & Liu Wang & Li Zhang, 2022. "Dynamic morphological transformations in soft architected materials via buckling instability encoded heterogeneous magnetization," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
- Xinyu Hu & Ting Tan & Benlong Wang & Zhimiao Yan, 2023. "A reprogrammable mechanical metamaterial with origami functional-group transformation and ring reconfiguration," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
- Zhou Hu & Zhibo Wei & Kun Wang & Yan Chen & Rui Zhu & Guoliang Huang & Gengkai Hu, 2023. "Engineering zero modes in transformable mechanical metamaterials," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
- Wenzhong Yan & Shuguang Li & Mauricio Deguchi & Zhaoliang Zheng & Daniela Rus & Ankur Mehta, 2023. "Origami-based integration of robots that sense, decide, and respond," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
- Tie Mei & Chang Qing Chen, 2023. "In-memory mechanical computing," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
- Junghwan Byun & Aniket Pal & Jongkuk Ko & Metin Sitti, 2024. "Integrated mechanical computing for autonomous soft machines," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
- Zemin Liu & Meng Li & Xiaoguang Dong & Ziyu Ren & Wenqi Hu & Metin Sitti, 2022. "Creating three-dimensional magnetic functional microdevices via molding-integrated direct laser writing," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
- Tie Mei & Zhiqiang Meng & Kejie Zhao & Chang Qing Chen, 2021. "A mechanical metamaterial with reprogrammable logical functions," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
- Laura J. Elstub & Shimra J. Fine & Karl E. Zelik, 2021. "Exoskeletons and Exosuits Could Benefit from Mode-Switching Body Interfaces That Loosen/Tighten to Improve Thermal Comfort," IJERPH, MDPI, vol. 18(24), pages 1-12, December.
- Liu, Mingyi & Qian, Feng & Mi, Jia & Zuo, Lei, 2022. "Biomechanical energy harvesting for wearable and mobile devices: State-of-the-art and future directions," Applied Energy, Elsevier, vol. 321(C).
- Siyuan Gao & Chengxu Yang & Hongting Chen & Xinqiang He & Lecheng Ruan & Qining Wang, 2024. "Bioinspired origami-based soft prosthetic knees," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
- Siqi An & Xiaowen Li & Zengrong Guo & Yi Huang & Yanlin Zhang & Hanqing Jiang, 2024. "Energy-efficient dynamic 3D metasurfaces via spatiotemporal jamming interleaved assemblies for tactile interfaces," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
- Huawei Qu & Chongjian Gao & Kaizheng Liu & Hongya Fu & Zhiyuan Liu & Paul H. J. Kouwer & Zhenyu Han & Changshun Ruan, 2024. "Gradient matters via filament diameter-adjustable 3D printing," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
- Hu Shi & Zhaoying Liu & Xuesong Mei, 2019. "Overview of Human Walking Induced Energy Harvesting Technologies and Its Possibility for Walking Robotics," Energies, MDPI, vol. 13(1), pages 1-22, December.
- Jun Kyu Choe & Junsoo Kim & Hyeonseo Song & Joonbum Bae & Jiyun Kim, 2023. "A soft, self-sensing tensile valve for perceptive soft robots," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
- Yin Zhang & Wang Zhang & Pan Gao & Xiaoqing Zhong & Wei Pu, 2022. "Finger-palm synergistic soft gripper for dynamic capture via energy harvesting and dissipation," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-024-55591-2. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.