IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-42323-1.html
   My bibliography  Save this article

A reprogrammable mechanical metamaterial with origami functional-group transformation and ring reconfiguration

Author

Listed:
  • Xinyu Hu

    (Shanghai Jiao Tong University)

  • Ting Tan

    (Shanghai Jiao Tong University)

  • Benlong Wang

    (Shanghai Jiao Tong University)

  • Zhimiao Yan

    (Shanghai Jiao Tong University)

Abstract

Recent advancements in reprogrammable metamaterials have enabled the development of intelligent matters with variable special properties in situ. These metamaterials employ intra-element physical reconfiguration and inter-element structural transformation. However, existing mono-characteristic homo-element mechanical metamaterials have limited reprogramming functions. Here, we introduce a reprogrammable mechanical metamaterial composed of origami elements with heterogeneous mechanical properties, which achieves various mechanical behavior patterns by functional group transformations and ring reconfigurations. Through the anisotropic assembly of two heterogeneous elements into a functional group, we enable mechanical behavior switching between positive and negative stiffness. The resulting polygonal ring exhibits rotational deformation, zero Poisson’s ratio stretching/compression deformation, and negative Poisson’s ratio auxetic deformation. Arranging these rings periodically yields homogeneous metamaterials. The reconfiguration of quadrilateral rings allows for continuous fine-tunability of the mechanical response and negative Poisson’s ratio. This mechanical metamaterial could provide a versatile material platform for reprogrammable mechanical computing, multi-purpose robots, transformable vehicles and architectures at different scales.

Suggested Citation

  • Xinyu Hu & Ting Tan & Benlong Wang & Zhimiao Yan, 2023. "A reprogrammable mechanical metamaterial with origami functional-group transformation and ring reconfiguration," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-42323-1
    DOI: 10.1038/s41467-023-42323-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-42323-1
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-42323-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Charles El Helou & Benjamin Grossmann & Christopher E. Tabor & Philip R. Buskohl & Ryan L. Harne, 2022. "Mechanical integrated circuit materials," Nature, Nature, vol. 608(7924), pages 699-703, August.
    2. Tie Mei & Zhiqiang Meng & Kejie Zhao & Chang Qing Chen, 2021. "A mechanical metamaterial with reprogrammable logical functions," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    3. Charles El Helou & Philip R. Buskohl & Christopher E. Tabor & Ryan L. Harne, 2021. "Digital logic gates in soft, conductive mechanical metamaterials," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    4. Tian Chen & Mark Pauly & Pedro M. Reis, 2021. "A reprogrammable mechanical metamaterial with stable memory," Nature, Nature, vol. 589(7842), pages 386-390, January.
    5. Hiromi Yasuda & Tomohiro Tachi & Mia Lee & Jinkyu Yang, 2017. "Origami-based tunable truss structures for non-volatile mechanical memory operation," Nature Communications, Nature, vol. 8(1), pages 1-7, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wenzhong Yan & Shuguang Li & Mauricio Deguchi & Zhaoliang Zheng & Daniela Rus & Ankur Mehta, 2023. "Origami-based integration of robots that sense, decide, and respond," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    2. Tie Mei & Chang Qing Chen, 2023. "In-memory mechanical computing," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    3. Lei Wu & Damiano Pasini, 2024. "Zero modes activation to reconcile floppiness, rigidity, and multistability into an all-in-one class of reprogrammable metamaterials," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    4. Junghwan Byun & Aniket Pal & Jongkuk Ko & Metin Sitti, 2024. "Integrated mechanical computing for autonomous soft machines," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    5. Tie Mei & Zhiqiang Meng & Kejie Zhao & Chang Qing Chen, 2021. "A mechanical metamaterial with reprogrammable logical functions," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    6. Xin Yang & Zhihe Zhang & Mengwei Xu & Shuxun Li & Yuanhong Zhang & Xue-Feng Zhu & Xiaoping Ouyang & Andrea Alù, 2024. "Digital non-Foster-inspired electronics for broadband impedance matching," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    7. Xinchen Ni & Haiwen Luan & Jin-Tae Kim & Sam I. Rogge & Yun Bai & Jean Won Kwak & Shangliangzi Liu & Da Som Yang & Shuo Li & Shupeng Li & Zhengwei Li & Yamin Zhang & Changsheng Wu & Xiaoyue Ni & Yongg, 2022. "Soft shape-programmable surfaces by fast electromagnetic actuation of liquid metal networks," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    8. Yaohui Wang & Haitao Ye & Jian He & Qi Ge & Yi Xiong, 2024. "Electrothermally controlled origami fabricated by 4D printing of continuous fiber-reinforced composites," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    9. Neng Xia & Dongdong Jin & Chengfeng Pan & Jiachen Zhang & Zhengxin Yang & Lin Su & Jinsheng Zhao & Liu Wang & Li Zhang, 2022. "Dynamic morphological transformations in soft architected materials via buckling instability encoded heterogeneous magnetization," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    10. Zhou Hu & Zhibo Wei & Kun Wang & Yan Chen & Rui Zhu & Guoliang Huang & Gengkai Hu, 2023. "Engineering zero modes in transformable mechanical metamaterials," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    11. Zemin Liu & Meng Li & Xiaoguang Dong & Ziyu Ren & Wenqi Hu & Metin Sitti, 2022. "Creating three-dimensional magnetic functional microdevices via molding-integrated direct laser writing," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    12. Haitao Ye & Qingjiang Liu & Jianxiang Cheng & Honggeng Li & Bingcong Jian & Rong Wang & Zechu Sun & Yang Lu & Qi Ge, 2023. "Multimaterial 3D printed self-locking thick-panel origami metamaterials," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    13. Amin Jamalimehr & Morad Mirzajanzadeh & Abdolhamid Akbarzadeh & Damiano Pasini, 2022. "Rigidly flat-foldable class of lockable origami-inspired metamaterials with topological stiff states," Nature Communications, Nature, vol. 13(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-42323-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.