IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-024-55494-2.html
   My bibliography  Save this article

Intrinsically stretchable fully π-conjugated polymers with inter-aggregate capillary interaction for deep-blue flexible inkjet-printed light-emitting diodes

Author

Listed:
  • Mingjian Ni

    (Nanjing Tech University (NanjingTech)
    Xiamen University)

  • Zhiqiang Zhuo

    (Nanjing Tech University (NanjingTech))

  • Bin Liu

    (Henan University)

  • Xu Han

    (Xiamen University)

  • Jing Yang

    (Nanjing Tech University (NanjingTech))

  • Lili Sun

    (Sun Yat-sen University)

  • Yuekuan Yang

    (Xiamen University)

  • Jiangli Cai

    (Henan University)

  • Xiang An

    (Nanjing Tech University (NanjingTech))

  • Lubing Bai

    (Nanjing Tech University (NanjingTech))

  • Man Xu

    (Nanjing University of Posts & Telecommunications)

  • Jinyi Lin

    (Nanjing Tech University (NanjingTech)
    Jiangsu University)

  • Quanyou Feng

    (Nanjing University of Posts & Telecommunications)

  • Guohua Xie

    (Xiamen University)

  • Yutong Wu

    (Nanjing Tech University (NanjingTech))

  • Wei Huang

    (Nanjing Tech University (NanjingTech)
    Xiamen University
    Henan University
    Sun Yat-sen University)

Abstract

Fully π-conjugated polymers consisting of plane and rigid aromatic units present a fantastic optoelectronic property, a promising candidate for printed and flexible optoelectronic devices. However, obtaining high-performance conjugated polymers with an excellent intrinsically flexible and printable capacity is a great challenge due to their inherent coffee-ring effect and brittle properties. Here, we report an asymmetric substitution strategy to improve the printable and stretchable properties of deep-blue light-emitting conjugated polymers with a strong inter-aggregate capillary interaction for flexible printed polymer light-emitting diodes. The loose rod-shaped stacking of asymmetric conjugated polymers chain in the precursor printed ink makes it easier to improve the intrinsic stretchability of inkjet-printed films. More interestingly, the anisotropic shape rod-like aggregate of conjugated polymers chains also induced a strong capillary interaction and further suppressed the coffee-ring effect, which is more likely to allow for uniform deposition during printed processing and form uniform printed films.

Suggested Citation

  • Mingjian Ni & Zhiqiang Zhuo & Bin Liu & Xu Han & Jing Yang & Lili Sun & Yuekuan Yang & Jiangli Cai & Xiang An & Lubing Bai & Man Xu & Jinyi Lin & Quanyou Feng & Guohua Xie & Yutong Wu & Wei Huang, 2025. "Intrinsically stretchable fully π-conjugated polymers with inter-aggregate capillary interaction for deep-blue flexible inkjet-printed light-emitting diodes," Nature Communications, Nature, vol. 16(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-024-55494-2
    DOI: 10.1038/s41467-024-55494-2
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-55494-2
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-55494-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Zhitao Zhang & Weichen Wang & Yuanwen Jiang & Yi-Xuan Wang & Yilei Wu & Jian-Cheng Lai & Simiao Niu & Chengyi Xu & Chien-Chung Shih & Cheng Wang & Hongping Yan & Luke Galuska & Nathaniel Prine & Hung-, 2022. "High-brightness all-polymer stretchable LED with charge-trapping dilution," Nature, Nature, vol. 603(7902), pages 624-630, March.
    2. Xiaodan Gu & Leo Shaw & Kevin Gu & Michael F. Toney & Zhenan Bao, 2018. "The meniscus-guided deposition of semiconducting polymers," Nature Communications, Nature, vol. 9(1), pages 1-16, December.
    3. Peter J. Yunker & Tim Still & Matthew A. Lohr & A. G. Yodh, 2011. "Suppression of the coffee-ring effect by shape-dependent capillary interactions," Nature, Nature, vol. 476(7360), pages 308-311, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chenchen Zhou & Shuaishuai Liang & Bin Qi & Chenxu Liu & Nam-Joon Cho, 2024. "One-pot microfluidic fabrication of micro ceramic particles," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    2. Jiayue Tang & Yuanyuan Zhao & Mi Wang & Dianyu Wang & Xuan Yang & Ruiran Hao & Mingzhan Wang & Yanlei Wang & Hongyan He & John H. Xin & Shuang Zheng, 2022. "Circadian humidity fluctuation induced capillary flow for sustainable mobile energy," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    3. Xiaodong Zhang & Yugang Zhao & Dongmin Wang, 2023. "Characterization of the Temperature Profile near Contact Lines of an Evaporating Sessile Drop," Energies, MDPI, vol. 16(6), pages 1-12, March.
    4. Chuanqian Shi & Jing Jiang & Chenglong Li & Chenhong Chen & Wei Jian & Jizhou Song, 2024. "Precision-induced localized molten liquid metal stamps for damage-free transfer printing of ultrathin membranes and 3D objects," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    5. Gun-Hee Lee & Ye Rim Lee & Hanul Kim & Do A Kwon & Hyeonji Kim & Congqi Yang & Siyoung Q. Choi & Seongjun Park & Jae-Woong Jeong & Steve Park, 2022. "Rapid meniscus-guided printing of stable semi-solid-state liquid metal microgranular-particle for soft electronics," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    6. Gun-Hee Lee & Do Hoon Lee & Woojin Jeon & Jihwan Yoon & Kwangguk Ahn & Kum Seok Nam & Min Kim & Jun Kyu Kim & Yong Hoe Koo & Jinmyoung Joo & WooChul Jung & Jaehong Lee & Jaewook Nam & Seongjun Park & , 2023. "Conductance stable and mechanically durable bi-layer EGaIn composite-coated stretchable fiber for 1D bioelectronics," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    7. Shi Tang & Youichi Tsuchiya & Jia Wang & Chihaya Adachi & Ludvig Edman, 2025. "White light-emitting electrochemical cells based on metal-free TADF emitters," Nature Communications, Nature, vol. 16(1), pages 1-13, December.
    8. Hyukmin Kweon & Keun-Yeong Choi & Han Wool Park & Ryungyu Lee & Ukjin Jeong & Min Jung Kim & Hyunmin Hong & Borina Ha & Sein Lee & Jang-Yeon Kwon & Kwun-Bum Chung & Moon Sung Kang & Hojin Lee & Do Hwa, 2022. "Silicone engineered anisotropic lithography for ultrahigh-density OLEDs," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    9. Sabrina D. Eder & Adam Fahy & Matthew G. Barr & J. R. Manson & Bodil Holst & Paul C. Dastoor, 2023. "Sub-resolution contrast in neutral helium microscopy through facet scattering for quantitative imaging of nanoscale topographies on macroscopic surfaces," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    10. Tiefeng Liu & Johanna Heimonen & Qilun Zhang & Chi-Yuan Yang & Jun-Da Huang & Han-Yan Wu & Marc-Antoine Stoeckel & Tom P. A. Pol & Yuxuan Li & Sang Young Jeong & Adam Marks & Xin-Yi Wang & Yuttapoom P, 2023. "Ground-state electron transfer in all-polymer donor:acceptor blends enables aqueous processing of water-insoluble conjugated polymers," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    11. Anik Karan & Margarita Darder & Urna Kansakar & Zach Norcross & Mark A. DeCoster, 2018. "Integration of a Copper-Containing Biohybrid (CuHARS) with Cellulose for Subsequent Degradation and Biomedical Control," IJERPH, MDPI, vol. 15(5), pages 1-12, April.
    12. Jin-Oh Kim & Won-Tae Koo & Hanul Kim & Chungseong Park & Taehoon Lee & Calvin Andreas Hutomo & Siyoung Q. Choi & Dong Soo Kim & Il-Doo Kim & Steve Park, 2021. "Large-area synthesis of nanoscopic catalyst-decorated conductive MOF film using microfluidic-based solution shearing," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    13. Su-Bon Kim & Donggyun Lee & Junho Kim & Taehyun Kim & Jee Hoon Sim & Jong-Heon Yang & Seung Jin Oh & Sangin Hahn & Woochan Lee & Dongho Choi & Taek-Soo Kim & Hanul Moon & Seunghyup Yoo, 2024. "3D height-alternant island arrays for stretchable OLEDs with high active area ratio and maximum strain," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    14. Jiachen Wang & Yuto Ochiai & Niannian Wu & Kiyohiro Adachi & Daishi Inoue & Daisuke Hashizume & Desheng Kong & Naoji Matsuhisa & Tomoyuki Yokota & Qiang Wu & Wei Ma & Lulu Sun & Sixing Xiong & Baocai , 2024. "Intrinsically stretchable organic photovoltaics by redistributing strain to PEDOT:PSS with enhanced stretchability and interfacial adhesion," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    15. Zhiqiang Zhuo & Mingjian Ni & Ningning Yu & Yingying Zheng & Yingru Lin & Jing Yang & Lili Sun & Lizhi Wang & Lubing Bai & Wenyu Chen & Man Xu & Fengwei Huo & Jinyi Lin & Quanyou Feng & Wei Huang, 2024. "Intrinsically stretchable fully π-conjugated polymer film via fluid conjugated molecular external-plasticizing for flexible light-emitting diodes," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    16. Marcel Rey & Johannes Walter & Johannes Harrer & Carmen Morcillo Perez & Salvatore Chiera & Sharanya Nair & Maret Ickler & Alesa Fuchs & Mark Michaud & Maximilian J. Uttinger & Andrew B. Schofield & J, 2022. "Versatile strategy for homogeneous drying patterns of dispersed particles," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    17. Hong Xiang & Yongfu Li & Qinglong Liao & Lei Xia & Xiaodong Wu & Huang Zhou & Chunmei Li & Xing Fan, 2024. "Recent Advances in Smart Fabric-Type Wearable Electronics toward Comfortable Wearing," Energies, MDPI, vol. 17(11), pages 1-36, May.
    18. Hossein Zargartalebi & S. Hossein Hejazi & Amir Sanati-Nezhad, 2022. "Self-assembly of highly ordered micro- and nanoparticle deposits," Nature Communications, Nature, vol. 13(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-024-55494-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.