IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v15y2018i5p844-d143074.html
   My bibliography  Save this article

Integration of a Copper-Containing Biohybrid (CuHARS) with Cellulose for Subsequent Degradation and Biomedical Control

Author

Listed:
  • Anik Karan

    (Cellular Neuroscience Laboratory, Biomedical Engineering, College of Engineering and Science, Louisiana Tech University, Ruston, LA 71270, USA
    These authors contributed equally to this work.)

  • Margarita Darder

    (Materials Science Institute of Madrid (ICMM), CSIC, 28049 Madrid, Spain
    These authors contributed equally to this work.)

  • Urna Kansakar

    (Cellular Neuroscience Laboratory, Biomedical Engineering, College of Engineering and Science, Louisiana Tech University, Ruston, LA 71270, USA)

  • Zach Norcross

    (Cellular Neuroscience Laboratory, Biomedical Engineering, College of Engineering and Science, Louisiana Tech University, Ruston, LA 71270, USA)

  • Mark A. DeCoster

    (Cellular Neuroscience Laboratory, Biomedical Engineering, College of Engineering and Science, Louisiana Tech University, Ruston, LA 71270, USA
    Cellular Neuroscience Laboratory, Institute for Micromanufacturing, College of Engineering and Science, Louisiana Tech University, Ruston, LA 71270, USA)

Abstract

We previously described the novel synthesis of a copper high-aspect ratio structure (CuHARS) biohybrid material using cystine. While extremely stable in water, CuHARS is completely (but slowly) degradable in cellular media. Here, integration of the CuHARS into cellulose matrices was carried out to provide added control for CuHARS degradation. Synthesized CuHARS was concentrated by centrifugation and then dried. The weighed mass was re-suspended in water. CuHARS was stable in water for months without degradation. In contrast, 25 μg/mL of the CuHARS in complete cell culture media was completely degraded (slowly) in 18 days under physiological conditions. Stable integration of CuHARS into cellulose matrices was achieved through assembly by mixing cellulose micro- and nano-fibers and CuHARS in an aqueous (pulp mixture) phase, followed by drying. Additional materials were integrated to make the hybrids magnetically susceptible. The cellulose-CuHARS composite films could be transferred, weighed, and cut into usable pieces; they maintained their form after rehydration in water for at least 7 days and were compatible with cell culture studies using brain tumor (glioma) cells. These studies demonstrate utility of a CuHARS-cellulose biohybrid for applied applications including: (1) a platform for biomedical tracking and (2) integration into a 2D/3D matrix using natural products (cellulose).

Suggested Citation

  • Anik Karan & Margarita Darder & Urna Kansakar & Zach Norcross & Mark A. DeCoster, 2018. "Integration of a Copper-Containing Biohybrid (CuHARS) with Cellulose for Subsequent Degradation and Biomedical Control," IJERPH, MDPI, vol. 15(5), pages 1-12, April.
  • Handle: RePEc:gam:jijerp:v:15:y:2018:i:5:p:844-:d:143074
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/15/5/844/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/15/5/844/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Peter J. Yunker & Tim Still & Matthew A. Lohr & A. G. Yodh, 2011. "Suppression of the coffee-ring effect by shape-dependent capillary interactions," Nature, Nature, vol. 476(7360), pages 308-311, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jiayue Tang & Yuanyuan Zhao & Mi Wang & Dianyu Wang & Xuan Yang & Ruiran Hao & Mingzhan Wang & Yanlei Wang & Hongyan He & John H. Xin & Shuang Zheng, 2022. "Circadian humidity fluctuation induced capillary flow for sustainable mobile energy," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    2. Xiaodong Zhang & Yugang Zhao & Dongmin Wang, 2023. "Characterization of the Temperature Profile near Contact Lines of an Evaporating Sessile Drop," Energies, MDPI, vol. 16(6), pages 1-12, March.
    3. Marcel Rey & Johannes Walter & Johannes Harrer & Carmen Morcillo Perez & Salvatore Chiera & Sharanya Nair & Maret Ickler & Alesa Fuchs & Mark Michaud & Maximilian J. Uttinger & Andrew B. Schofield & J, 2022. "Versatile strategy for homogeneous drying patterns of dispersed particles," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    4. Hossein Zargartalebi & S. Hossein Hejazi & Amir Sanati-Nezhad, 2022. "Self-assembly of highly ordered micro- and nanoparticle deposits," Nature Communications, Nature, vol. 13(1), pages 1-11, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:15:y:2018:i:5:p:844-:d:143074. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.