IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v4y2013i1d10.1038_ncomms2809.html
   My bibliography  Save this article

Using 20-million-year-old amber to test the super-Arrhenius behaviour of glass-forming systems

Author

Listed:
  • Jing Zhao

    (Texas Tech University)

  • Sindee L. Simon

    (Texas Tech University)

  • Gregory B. McKenna

    (Texas Tech University)

Abstract

Fossil amber offers the opportunity to investigate the dynamics of glass-forming materials far below the nominal glass transition temperature. This is important in the context of classical theory, as well as some new theories that challenge the idea of an ‘ideal’ glass transition. Here we report results from calorimetric and stress relaxation experiments using a 20-million-year-old Dominican amber. By performing the stress relaxation experiments in a step-wise fashion, we measured the relaxation time at each temperature and, above the fictive temperature of this 20-million-year-old glass, this is an upper bound to the equilibrium relaxation time. The results deviate dramatically from the expectation of classical theory and are consistent with some modern ideas, in which the diverging timescale signature of complex fluids disappears below the glass transition temperature.

Suggested Citation

  • Jing Zhao & Sindee L. Simon & Gregory B. McKenna, 2013. "Using 20-million-year-old amber to test the super-Arrhenius behaviour of glass-forming systems," Nature Communications, Nature, vol. 4(1), pages 1-6, June.
  • Handle: RePEc:nat:natcom:v:4:y:2013:i:1:d:10.1038_ncomms2809
    DOI: 10.1038/ncomms2809
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms2809
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms2809?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Valerio Lisio & Isabella Gallino & Sascha Sebastian Riegler & Maximilian Frey & Nico Neuber & Golden Kumar & Jan Schroers & Ralf Busch & Daniele Cangialosi, 2023. "Size-dependent vitrification in metallic glasses," Nature Communications, Nature, vol. 14(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:4:y:2013:i:1:d:10.1038_ncomms2809. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.