Configurational entropy of self-propelled glass formers
Author
Abstract
Suggested Citation
DOI: 10.1016/j.physa.2023.129041
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Silke Henkes & Kaja Kostanjevec & J. Martin Collinson & Rastko Sknepnek & Eric Bertin, 2020. "Dense active matter model of motion patterns in confluent cell monolayers," Nature Communications, Nature, vol. 11(1), pages 1-9, December.
- Antoine Bricard & Jean-Baptiste Caussin & Debasish Das & Charles Savoie & Vijayakumar Chikkadi & Kyohei Shitara & Oleksandr Chepizhko & Fernando Peruani & David Saintillan & Denis Bartolo, 2015. "Emergent vortices in populations of colloidal rollers," Nature Communications, Nature, vol. 6(1), pages 1-8, November.
- Rituparno Mandal & Pranab Jyoti Bhuyan & Pinaki Chaudhuri & Chandan Dasgupta & Madan Rao, 2020. "Extreme active matter at high densities," Nature Communications, Nature, vol. 11(1), pages 1-8, December.
- Sastry, Srikanth & Debenedetti, Pablo G. & Stillinger, Frank H. & Schrøder, Thomas B. & Dyre, Jeppe C. & Glotzer, Sharon C., 1999. "Potential energy landscape signatures of slow dynamics in glass forming liquids," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 270(1), pages 301-308.
- Pablo G. Debenedetti & Frank H. Stillinger, 2001. "Supercooled liquids and the glass transition," Nature, Nature, vol. 410(6825), pages 259-267, March.
- Srikanth Sastry, 2001. "The relationship between fragility, configurational entropy and the potential energy landscape of glass-forming liquids," Nature, Nature, vol. 409(6817), pages 164-167, January.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- C.N., Sachin & Joy, Ashwin, 2022. "Entropy scaling laws in self propelled glass formers," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 588(C).
- Hengwei Luan & Xin Zhang & Hongyu Ding & Fei Zhang & J. H. Luan & Z. B. Jiao & Yi-Chieh Yang & Hengtong Bu & Ranbin Wang & Jialun Gu & Chunlin Shao & Qing Yu & Yang Shao & Qiaoshi Zeng & Na Chen & C. , 2022. "High-entropy induced a glass-to-glass transition in a metallic glass," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
- Birte Riechers & Amlan Das & Eric Dufresne & Peter M. Derlet & Robert Maaß, 2024. "Intermittent cluster dynamics and temporal fractional diffusion in a bulk metallic glass," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
- Nicole L. Mandel & Soohyun Lee & Kimyung Kim & Keewook Paeng & Laura J. Kaufman, 2022. "Single molecule demonstration of Debye–Stokes–Einstein breakdown in polystyrene near the glass transition temperature," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
- Simone Ciarella & Dmytro Khomenko & Ludovic Berthier & Felix C. Mocanu & David R. Reichman & Camille Scalliet & Francesco Zamponi, 2023. "Finding defects in glasses through machine learning," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
- Lemke, N & de Almeida, R.M.C, 2004. "Diffusion on fractal phase spaces and entropy production," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 340(1), pages 309-315.
- Pragya Arora & Souvik Sadhukhan & Saroj Kumar Nandi & Dapeng Bi & A. K. Sood & Rajesh Ganapathy, 2024. "A shape-driven reentrant jamming transition in confluent monolayers of synthetic cell-mimics," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
- Leo Zella & Jaeyun Moon & Takeshi Egami, 2024. "Ripples in the bottom of the potential energy landscape of metallic glass," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
- Lars V. Bock & Helmut Grubmüller, 2022. "Effects of cryo-EM cooling on structural ensembles," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
- Giuseppe Cassone & Fausto Martelli, 2024. "Electrofreezing of liquid water at ambient conditions," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
- Archana, G.R. & Barik, Debashis, 2024. "Multiple current reversals in driven inertial coupled Brownian particles under rough symmetric periodic potential," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 650(C).
- Hideaki Murase & Shunto Arai & Tatsuo Hasegawa & Kazuya Miyagawa & Kazushi Kanoda, 2023. "Spatiotemporal observation of quantum crystallization of electrons," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
- Jyoti Prasad Banerjee & Rituparno Mandal & Deb Sankar Banerjee & Shashi Thutupalli & Madan Rao, 2022. "Unjamming and emergent nonreciprocity in active ploughing through a compressible viscoelastic fluid," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
- Roger Farmer & Jean-Philippe Bouchaud, 2020.
"Self-Fulfilling Prophecies, Quasi Non-Ergodicity & Wealth Inequality,"
NBER Working Papers
28261, National Bureau of Economic Research, Inc.
- Bouchaud, Jean-Philippe & Farmer, Roger, 2022. "Self-Fulfilling Prophecies, Quasi Non-Ergodicity & Wealth Inequality," CEPR Discussion Papers 15573, C.E.P.R. Discussion Papers.
- Chung Wing Chan & Daihui Wu & Kaiyao Qiao & Kin Long Fong & Zhiyu Yang & Yilong Han & Rui Zhang, 2024. "Chiral active particles are sensitive reporters to environmental geometry," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
- Toledo-Marín, J. Quetzalcóatl & Castillo, Isaac Pérez & Naumis, Gerardo G., 2016. "Minimal cooling speed for glass transition in a simple solvable energy landscape model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 451(C), pages 227-236.
- Peng Luo & Yanqin Zhai & Peter Falus & Victoria García Sakai & Monika Hartl & Maiko Kofu & Kenji Nakajima & Antonio Faraone & Y Z, 2022. "Q-dependent collective relaxation dynamics of glass-forming liquid Ca0.4K0.6(NO3)1.4 investigated by wide-angle neutron spin-echo," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
- Sheykhali, Somaye & Darooneh, Amir Hossein & Jafari, Gholam Reza, 2020. "Partial balance in social networks with stubborn links," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 548(C).
- Bo Zhang & Andreas Glatz & Igor S. Aranson & Alexey Snezhko, 2023. "Spontaneous shock waves in pulse-stimulated flocks of Quincke rollers," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
- Rituparno Mandal & Corneel Casert & Peter Sollich, 2022. "Robust prediction of force chains in jammed solids using graph neural networks," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
More about this item
Keywords
Active Ornstein–Uhlenbeck particles; Configurational entropy; Generalized Adam-Gibbs relations; Random pinning; Point-to-set length scale;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:626:y:2023:i:c:s0378437123005964. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.