Author
Listed:
- Naoko Iida
(National Cancer Center Research Institute)
- Ai Okada
(National Cancer Center Research Institute)
- Yoshihisa Kobayashi
(National Cancer Center Research Institute)
- Kenichi Chiba
(National Cancer Center Research Institute)
- Yasushi Yatabe
(National Cancer Center Research Institute)
- Yuichi Shiraishi
(National Cancer Center Research Institute)
Abstract
Genomic variants causing abnormal splicing play important roles in genetic disorders and cancer development. Among them, variants that cause the formation of novel splice-sites (splice-site creating variants, SSCVs) are particularly difficult to identify and often overlooked in genomic studies. Additionally, these SSCVs are frequently considered promising candidates for treatment with splice-switching antisense oligonucleotides (ASOs). To leverage massive transcriptome sequence data such as those available from the Sequence Read Archive, we develop a novel framework to screen for SSCVs solely using transcriptome data. We apply it to 322,072 publicly available transcriptomes and identify 30,130 SSCVs. Among them, 5121 SSCVs affect disease-causing variants. By utilizing this extensive collection of SSCVs, we reveal the characteristics of Alu exonization via SSCVs, especially the hotspots of SSCVs within Alu sequences and their evolutionary relationships. We discover novel gain-of-function SSCVs in the deep intronic region of the NOTCH1 gene and demonstrate that their activation can be suppressed using splice-switching ASOs. Collectively, we provide a systematic approach for automatically acquiring a registry of SSCVs, which facilitates the elucidation of novel biological mechanisms underlying splicing and serves as a valuable resource for drug discovery. The catalogs of SSCVs identified in this study are accessible on the SSCV DB ( https://sscvdb.io ).
Suggested Citation
Naoko Iida & Ai Okada & Yoshihisa Kobayashi & Kenichi Chiba & Yasushi Yatabe & Yuichi Shiraishi, 2025.
"Systematically developing a registry of splice-site creating variants utilizing massive publicly available transcriptome sequence data,"
Nature Communications, Nature, vol. 16(1), pages 1-15, December.
Handle:
RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-024-55185-y
DOI: 10.1038/s41467-024-55185-y
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-024-55185-y. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.