IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-023-44506-2.html
   My bibliography  Save this article

A distant global control region is essential for normal expression of anterior HOXA genes during mouse and human craniofacial development

Author

Listed:
  • Andrea Wilderman

    (Graduate Program UConn Health)

  • Eva D’haene

    (Ghent University)

  • Machteld Baetens

    (Ghent University)

  • Tara N. Yankee

    (Graduate Program UConn Health)

  • Emma Wentworth Winchester

    (Graduate Program UConn Health
    University of Connecticut School of Dental Medicine)

  • Nicole Glidden

    (University of Connecticut School of Medicine)

  • Ellen Roets

    (Ghent University Hospital)

  • Jo Dorpe

    (Ghent University, Ghent University Hospital)

  • Sandra Janssens

    (Ghent University)

  • Danny E. Miller

    (University of Washington
    Seattle Children’s Hospital
    University of Washington
    University of Washington)

  • Miranda Galey

    (University of Washington
    University of Washington)

  • Kari M. Brown

    (Cincinnati Children’s Hospital Medical Center
    University of Cincinnati College of Medicine)

  • Rolf W. Stottmann

    (Nationwide Children’s Hospital
    Nationwide Children’s Hospital
    The Ohio State University School of Medicine)

  • Sarah Vergult

    (Ghent University)

  • K. Nicole Weaver

    (Cincinnati Children’s Hospital Medical Center
    Cincinnati Children’s Hospital Medical Center)

  • Samantha A. Brugmann

    (Cincinnati Children’s Hospital Medical Center
    University of Cincinnati College of Medicine)

  • Timothy C. Cox

    (University of Missouri Kansas City
    University of Missouri Kansas City)

  • Justin Cotney

    (University of Connecticut School of Medicine
    University of Connecticut)

Abstract

Craniofacial abnormalities account for approximately one third of birth defects. The regulatory programs that build the face require precisely controlled spatiotemporal gene expression, achieved through tissue-specific enhancers. Clusters of coactivated enhancers and their target genes, known as superenhancers, are important in determining cell identity but have been largely unexplored in development. In this study we identified superenhancer regions unique to human embryonic craniofacial tissue. To demonstrate the importance of such regions in craniofacial development and disease, we focused on an ~600 kb noncoding region located between NPVF and NFE2L3. We identified long range interactions with this region in both human and mouse embryonic craniofacial tissue with the anterior portion of the HOXA gene cluster. Mice lacking this superenhancer exhibit perinatal lethality, and present with highly penetrant skull defects and orofacial clefts phenocopying Hoxa2-/- mice. Moreover, we identified two cases of de novo copy number changes of the superenhancer in humans both with severe craniofacial abnormalities. This evidence suggests we have identified a critical noncoding locus control region that specifically regulates anterior HOXA genes and copy number changes are pathogenic in human patients.

Suggested Citation

  • Andrea Wilderman & Eva D’haene & Machteld Baetens & Tara N. Yankee & Emma Wentworth Winchester & Nicole Glidden & Ellen Roets & Jo Dorpe & Sandra Janssens & Danny E. Miller & Miranda Galey & Kari M. B, 2024. "A distant global control region is essential for normal expression of anterior HOXA genes during mouse and human craniofacial development," Nature Communications, Nature, vol. 15(1), pages 1-23, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-023-44506-2
    DOI: 10.1038/s41467-023-44506-2
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-44506-2
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-44506-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Danny Leung & Inkyung Jung & Nisha Rajagopal & Anthony Schmitt & Siddarth Selvaraj & Ah Young Lee & Chia-An Yen & Shin Lin & Yiing Lin & Yunjiang Qiu & Wei Xie & Feng Yue & Manoj Hariharan & Pradipta , 2015. "Integrative analysis of haplotype-resolved epigenomes across human tissues," Nature, Nature, vol. 518(7539), pages 350-354, February.
    2. Jesse R. Dixon & Siddarth Selvaraj & Feng Yue & Audrey Kim & Yan Li & Yin Shen & Ming Hu & Jun S. Liu & Bing Ren, 2012. "Topological domains in mammalian genomes identified by analysis of chromatin interactions," Nature, Nature, vol. 485(7398), pages 376-380, May.
    3. Konrad J. Karczewski & Laurent C. Francioli & Grace Tiao & Beryl B. Cummings & Jessica Alföldi & Qingbo Wang & Ryan L. Collins & Kristen M. Laricchia & Andrea Ganna & Daniel P. Birnbaum & Laura D. Gau, 2020. "The mutational constraint spectrum quantified from variation in 141,456 humans," Nature, Nature, vol. 581(7809), pages 434-443, May.
    4. Hong Joo Kim & Nam Chul Kim & Yong-Dong Wang & Emily A. Scarborough & Jennifer Moore & Zamia Diaz & Kyle S. MacLea & Brian Freibaum & Songqing Li & Amandine Molliex & Anderson P. Kanagaraj & Robert Ca, 2013. "Mutations in prion-like domains in hnRNPA2B1 and hnRNPA1 cause multisystem proteinopathy and ALS," Nature, Nature, vol. 495(7442), pages 467-473, March.
    5. Marco Osterwalder & Iros Barozzi & Virginie Tissières & Yoko Fukuda-Yuzawa & Brandon J. Mannion & Sarah Y. Afzal & Elizabeth A. Lee & Yiwen Zhu & Ingrid Plajzer-Frick & Catherine S. Pickle & Momoe Kat, 2018. "Enhancer redundancy provides phenotypic robustness in mammalian development," Nature, Nature, vol. 554(7691), pages 239-243, February.
    6. Martin Franke & Daniel M. Ibrahim & Guillaume Andrey & Wibke Schwarzer & Verena Heinrich & Robert Schöpflin & Katerina Kraft & Rieke Kempfer & Ivana Jerković & Wing-Lee Chan & Malte Spielmann & Bernd , 2016. "Formation of new chromatin domains determines pathogenicity of genomic duplications," Nature, Nature, vol. 538(7624), pages 265-269, October.
    7. Marcelo A. Nóbrega & Yiwen Zhu & Ingrid Plajzer-Frick & Veena Afzal & Edward M. Rubin, 2004. "Megabase deletions of gene deserts result in viable mice," Nature, Nature, vol. 431(7011), pages 988-993, October.
    8. Jialiang Huang & Kailong Li & Wenqing Cai & Xin Liu & Yuannyu Zhang & Stuart H. Orkin & Jian Xu & Guo-Cheng Yuan, 2018. "Dissecting super-enhancer hierarchy based on chromatin interactions," Nature Communications, Nature, vol. 9(1), pages 1-12, December.
    9. Sandra Kessler & Maryline Minoux & Onkar Joshi & Yousra Zouari & Sebastien Ducret & Fiona Ross & Nathalie Vilain & Adwait Salvi & Joachim Wolff & Hubertus Kohler & Michael B. Stadler & Filippo M. Rijl, 2023. "A multiple super-enhancer region establishes inter-TAD interactions and controls Hoxa function in cranial neural crest," Nature Communications, Nature, vol. 14(1), pages 1-22, December.
    10. Tara N. Yankee & Sungryong Oh & Emma Wentworth Winchester & Andrea Wilderman & Kelsey Robinson & Tia Gordon & Jill A. Rosenfeld & Jennifer VanOudenhove & Daryl A. Scott & Elizabeth J. Leslie & Justin , 2023. "Integrative analysis of transcriptome dynamics during human craniofacial development identifies candidate disease genes," Nature Communications, Nature, vol. 14(1), pages 1-23, December.
    11. Stephane E. Castel & Pejman Mohammadi & Wendy K. Chung & Yufeng Shen & Tuuli Lappalainen, 2016. "Rare variant phasing and haplotypic expression from RNA sequencing with phASER," Nature Communications, Nature, vol. 7(1), pages 1-6, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Samuel Abassah-Oppong & Matteo Zoia & Brandon J. Mannion & Raquel Rouco & Virginie Tissières & Cailyn H. Spurrell & Virginia Roland & Fabrice Darbellay & Anja Itum & Julie Gamart & Tabitha A. Festa-Da, 2024. "A gene desert required for regulatory control of pleiotropic Shox2 expression and embryonic survival," Nature Communications, Nature, vol. 15(1), pages 1-24, December.
    2. Peter H. Dixon & Adam P. Levine & Inês Cebola & Melanie M. Y. Chan & Aliya S. Amin & Anshul Aich & Monika Mozere & Hannah Maude & Alice L. Mitchell & Jun Zhang & Jenny Chambers & Argyro Syngelaki & Je, 2022. "GWAS meta-analysis of intrahepatic cholestasis of pregnancy implicates multiple hepatic genes and regulatory elements," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    3. Vinícius G. Contessoto & Olga Dudchenko & Erez Lieberman Aiden & Peter G. Wolynes & José N. Onuchic & Michele Pierro, 2023. "Interphase chromosomes of the Aedes aegypti mosquito are liquid crystalline and can sense mechanical cues," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    4. Iker Núñez-Carpintero & Maria Rigau & Mattia Bosio & Emily O’Connor & Sally Spendiff & Yoshiteru Azuma & Ana Topf & Rachel Thompson & Peter A. C. ’t Hoen & Teodora Chamova & Ivailo Tournev & Velina Gu, 2024. "Rare disease research workflow using multilayer networks elucidates the molecular determinants of severity in Congenital Myasthenic Syndromes," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    5. Jin Woo Oh & Michael A. Beer, 2024. "Gapped-kmer sequence modeling robustly identifies regulatory vocabularies and distal enhancers conserved between evolutionarily distant mammals," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    6. Zhaohui Qin & Ben Li & Karen N. Conneely & Hao Wu & Ming Hu & Deepak Ayyala & Yongseok Park & Victor X. Jin & Fangyuan Zhang & Han Zhang & Li Li & Shili Lin, 2016. "Statistical Challenges in Analyzing Methylation and Long-Range Chromosomal Interaction Data," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 8(2), pages 284-309, October.
    7. Noah Dukler & Mehreen R. Mughal & Ritika Ramani & Yi-Fei Huang & Adam Siepel, 2022. "Extreme purifying selection against point mutations in the human genome," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    8. Jia-Yong Zhong & Longjian Niu & Zhuo-Bin Lin & Xin Bai & Ying Chen & Feng Luo & Chunhui Hou & Chuan-Le Xiao, 2023. "High-throughput Pore-C reveals the single-allele topology and cell type-specificity of 3D genome folding," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    9. Beatriz del Blanco & Sergio Niñerola & Ana M. Martín-González & Juan Paraíso-Luna & Minji Kim & Rafael Muñoz-Viana & Carina Racovac & Jose V. Sanchez-Mut & Yijun Ruan & Ángel Barco, 2024. "Kdm1a safeguards the topological boundaries of PRC2-repressed genes and prevents aging-related euchromatinization in neurons," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
    10. Ada J. S. Chan & Worrawat Engchuan & Miriam S. Reuter & Zhuozhi Wang & Bhooma Thiruvahindrapuram & Brett Trost & Thomas Nalpathamkalam & Carol Negrijn & Sylvia Lamoureux & Giovanna Pellecchia & Rohan , 2022. "Genome-wide rare variant score associates with morphological subtypes of autism spectrum disorder," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    11. Hong Joo Kim & Payam Mohassel & Sandra Donkervoort & Lin Guo & Kevin O’Donovan & Maura Coughlin & Xaviere Lornage & Nicola Foulds & Simon R. Hammans & A. Reghan Foley & Charlotte M. Fare & Alice F. Fo, 2022. "Heterozygous frameshift variants in HNRNPA2B1 cause early-onset oculopharyngeal muscular dystrophy," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    12. Claire Marchal & Nivedita Singh & Zachary Batz & Jayshree Advani & Catherine Jaeger & Ximena Corso-Díaz & Anand Swaroop, 2022. "High-resolution genome topology of human retina uncovers super enhancer-promoter interactions at tissue-specific and multifactorial disease loci," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    13. Christopher Chase Bolt & Lucille Lopez-Delisle & Aurélie Hintermann & Bénédicte Mascrez & Antonella Rauseo & Guillaume Andrey & Denis Duboule, 2022. "Context-dependent enhancer function revealed by targeted inter-TAD relocation," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    14. Zhuoran Xu & Quan Li & Luigi Marchionni & Kai Wang, 2023. "PhenoSV: interpretable phenotype-aware model for the prioritization of genes affected by structural variants," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    15. Matthieu Santos & Stéphanie Backer & Frédéric Auradé & Matthew Man-Kin Wong & Maud Wurmser & Rémi Pierre & Francina Langa & Marcio Cruzeiro & Alain Schmitt & Jean-Paul Concordet & Athanassia Sotiropou, 2022. "A fast Myosin super enhancer dictates muscle fiber phenotype through competitive interactions with Myosin genes," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    16. Arthur S. Lee & Lauren J. Ayers & Michael Kosicki & Wai-Man Chan & Lydia N. Fozo & Brandon M. Pratt & Thomas E. Collins & Boxun Zhao & Matthew F. Rose & Alba Sanchis-Juan & Jack M. Fu & Isaac Wong & X, 2024. "A cell type-aware framework for nominating non-coding variants in Mendelian regulatory disorders," Nature Communications, Nature, vol. 15(1), pages 1-26, December.
    17. Sandra Kessler & Maryline Minoux & Onkar Joshi & Yousra Zouari & Sebastien Ducret & Fiona Ross & Nathalie Vilain & Adwait Salvi & Joachim Wolff & Hubertus Kohler & Michael B. Stadler & Filippo M. Rijl, 2023. "A multiple super-enhancer region establishes inter-TAD interactions and controls Hoxa function in cranial neural crest," Nature Communications, Nature, vol. 14(1), pages 1-22, December.
    18. Surya K Ghosh & Daniel Jost, 2018. "How epigenome drives chromatin folding and dynamics, insights from efficient coarse-grained models of chromosomes," PLOS Computational Biology, Public Library of Science, vol. 14(5), pages 1-26, May.
    19. Markus Götz & Olivier Messina & Sergio Espinola & Jean-Bernard Fiche & Marcelo Nollmann, 2022. "Multiple parameters shape the 3D chromatin structure of single nuclei at the doc locus in Drosophila," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    20. Zhen-Hui Wang & Xin-Feng Wang & Tianyuan Lu & Ming-Rui Li & Peng Jiang & Jing Zhao & Si-Tong Liu & Xue-Qi Fu & Jonathan F. Wendel & Yves Peer & Bao Liu & Lin-Feng Li, 2022. "Reshuffling of the ancestral core-eudicot genome shaped chromatin topology and epigenetic modification in Panax," Nature Communications, Nature, vol. 13(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-023-44506-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.