IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-41185-x.html
   My bibliography  Save this article

Demonstrating paths for unlocking the value of cloud genomics through cross cohort analysis

Author

Listed:
  • Nicole Deflaux

    (Verily Life Sciences)

  • Margaret Sunitha Selvaraj

    (Program in Medical and Population Genetics and the Cardiovascular Disease Initiative, Broad Institute of Harvard and MIT
    Harvard Medical School
    Massachusetts General Hospital
    Massachusetts General Hospital)

  • Henry Robert Condon

    (Vanderbilt University Medical Center)

  • Kelsey Mayo

    (Vanderbilt University Medical Center)

  • Sara Haidermota

    (Program in Medical and Population Genetics and the Cardiovascular Disease Initiative, Broad Institute of Harvard and MIT
    Massachusetts General Hospital)

  • Melissa A. Basford

    (Vanderbilt University Medical Center)

  • Chris Lunt

    (All of Us Research Program, National Institutes of Health)

  • Anthony A. Philippakis

    (Broad Institute of Harvard and MIT)

  • Dan M. Roden

    (Vanderbilt University Medical Center
    Vanderbilt University Medical Center
    Vanderbilt University Medical Center)

  • Joshua C. Denny

    (All of Us Research Program, National Institutes of Health)

  • Anjene Musick

    (All of Us Research Program, National Institutes of Health)

  • Rory Collins

    (University of Oxford
    UK Biobank)

  • Naomi Allen

    (University of Oxford
    UK Biobank)

  • Mark Effingham

    (UK Biobank)

  • David Glazer

    (Verily Life Sciences)

  • Pradeep Natarajan

    (Program in Medical and Population Genetics and the Cardiovascular Disease Initiative, Broad Institute of Harvard and MIT
    Harvard Medical School
    Massachusetts General Hospital
    Massachusetts General Hospital)

  • Alexander G. Bick

    (Vanderbilt University Medical Center)

Abstract

Recently, large scale genomic projects such as All of Us and the UK Biobank have introduced a new research paradigm where data are stored centrally in cloud-based Trusted Research Environments (TREs). To characterize the advantages and drawbacks of different TRE attributes in facilitating cross-cohort analysis, we conduct a Genome-Wide Association Study of standard lipid measures using two approaches: meta-analysis and pooled analysis. Comparison of full summary data from both approaches with an external study shows strong correlation of known loci with lipid levels (R2 ~ 83–97%). Importantly, 90 variants meet the significance threshold only in the meta-analysis and 64 variants are significant only in pooled analysis, with approximately 20% of variants in each of those groups being most prevalent in non-European, non-Asian ancestry individuals. These findings have important implications, as technical and policy choices lead to cross-cohort analyses generating similar, but not identical results, particularly for non-European ancestral populations.

Suggested Citation

  • Nicole Deflaux & Margaret Sunitha Selvaraj & Henry Robert Condon & Kelsey Mayo & Sara Haidermota & Melissa A. Basford & Chris Lunt & Anthony A. Philippakis & Dan M. Roden & Joshua C. Denny & Anjene Mu, 2023. "Demonstrating paths for unlocking the value of cloud genomics through cross cohort analysis," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-41185-x
    DOI: 10.1038/s41467-023-41185-x
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-41185-x
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-41185-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Pradeep Natarajan & Gina M. Peloso & Seyedeh Maryam Zekavat & May Montasser & Andrea Ganna & Mark Chaffin & Amit V. Khera & Wei Zhou & Jonathan M. Bloom & Jesse M. Engreitz & Jason Ernst & Jeffrey R. , 2018. "Deep-coverage whole genome sequences and blood lipids among 16,324 individuals," Nature Communications, Nature, vol. 9(1), pages 1-12, December.
    2. Clare Bycroft & Colin Freeman & Desislava Petkova & Gavin Band & Lloyd T. Elliott & Kevin Sharp & Allan Motyer & Damjan Vukcevic & Olivier Delaneau & Jared O’Connell & Adrian Cortes & Samantha Welsh &, 2018. "The UK Biobank resource with deep phenotyping and genomic data," Nature, Nature, vol. 562(7726), pages 203-209, October.
    3. D. Y. Lin & D. Zeng, 2010. "On the relative efficiency of using summary statistics versus individual-level data in meta-analysis," Biometrika, Biometrika Trust, vol. 97(2), pages 321-332.
    4. Konrad J. Karczewski & Laurent C. Francioli & Grace Tiao & Beryl B. Cummings & Jessica Alföldi & Qingbo Wang & Ryan L. Collins & Kristen M. Laricchia & Andrea Ganna & Daniel P. Birnbaum & Laura D. Gau, 2020. "The mutational constraint spectrum quantified from variation in 141,456 humans," Nature, Nature, vol. 581(7809), pages 434-443, May.
    5. Sarah E. Graham & Shoa L. Clarke & Kuan-Han H. Wu & Stavroula Kanoni & Greg J. M. Zajac & Shweta Ramdas & Ida Surakka & Ioanna Ntalla & Sailaja Vedantam & Thomas W. Winkler & Adam E. Locke & Eirini Ma, 2021. "The power of genetic diversity in genome-wide association studies of lipids," Nature, Nature, vol. 600(7890), pages 675-679, December.
    6. Margaret Sunitha Selvaraj & Xihao Li & Zilin Li & Akhil Pampana & David Y. Zhang & Joseph Park & Stella Aslibekyan & Joshua C. Bis & Jennifer A. Brody & Brian E. Cade & Lee-Ming Chuang & Ren-Hua Chung, 2022. "Whole genome sequence analysis of blood lipid levels in >66,000 individuals," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Natalie DeForest & Yuqi Wang & Zhiyi Zhu & Jacqueline S. Dron & Ryan Koesterer & Pradeep Natarajan & Jason Flannick & Tiffany Amariuta & Gina M. Peloso & Amit R. Majithia, 2024. "Genome-wide discovery and integrative genomic characterization of insulin resistance loci using serum triglycerides to HDL-cholesterol ratio as a proxy," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    2. Young Jin Kim & Sanghoon Moon & Mi Yeong Hwang & Sohee Han & Hye-Mi Jang & Jinhwa Kong & Dong Mun Shin & Kyungheon Yoon & Sung Min Kim & Jong-Eun Lee & Anubha Mahajan & Hyun-Young Park & Mark I. McCar, 2022. "The contribution of common and rare genetic variants to variation in metabolic traits in 288,137 East Asians," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    3. Vincent Michaud & Eulalie Lasseaux & David J. Green & Dave T. Gerrard & Claudio Plaisant & Tomas Fitzgerald & Ewan Birney & Benoît Arveiler & Graeme C. Black & Panagiotis I. Sergouniotis, 2022. "The contribution of common regulatory and protein-coding TYR variants to the genetic architecture of albinism," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    4. Ruoyu Tian & Tian Ge & Hyeokmoon Kweon & Daniel B. Rocha & Max Lam & Jimmy Z. Liu & Kritika Singh & Daniel F. Levey & Joel Gelernter & Murray B. Stein & Ellen A. Tsai & Hailiang Huang & Christopher F., 2024. "Whole-exome sequencing in UK Biobank reveals rare genetic architecture for depression," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    5. Magdalena Zimoń & Yunfeng Huang & Anthi Trasta & Aliaksandr Halavatyi & Jimmy Z. Liu & Chia-Yen Chen & Peter Blattmann & Bernd Klaus & Christopher D. Whelan & David Sexton & Sally John & Wolfgang Hube, 2021. "Pairwise effects between lipid GWAS genes modulate lipid plasma levels and cellular uptake," Nature Communications, Nature, vol. 12(1), pages 1-16, December.
    6. Xiaofeng Zhu & Yihe Yang & Noah Lorincz-Comi & Gen Li & Amy R. Bentley & Paul S. de Vries & Michael Brown & Alanna C. Morrison & Charles N. Rotimi & W. James Gauderman & Dabeeru C. Rao & Hugues Aschar, 2024. "An approach to identify gene-environment interactions and reveal new biological insight in complex traits," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    7. Injeong Shim & Hiroyuki Kuwahara & NingNing Chen & Mais O. Hashem & Lama AlAbdi & Mohamed Abouelhoda & Hong-Hee Won & Pradeep Natarajan & Patrick T. Ellinor & Amit V. Khera & Xin Gao & Fowzan S. Alkur, 2023. "Clinical utility of polygenic scores for cardiometabolic disease in Arabs," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    8. H. Serhat Tetikol & Deniz Turgut & Kubra Narci & Gungor Budak & Ozem Kalay & Elif Arslan & Sinem Demirkaya-Budak & Alexey Dolgoborodov & Duygu Kabakci-Zorlu & Vladimir Semenyuk & Amit Jain & Brandi N., 2022. "Pan-African genome demonstrates how population-specific genome graphs improve high-throughput sequencing data analysis," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    9. Jeffrey D. Wall & J. Fah Sathirapongsasuti & Ravi Gupta & Asif Rasheed & Radha Venkatesan & Saurabh Belsare & Ramesh Menon & Sameer Phalke & Anuradha Mittal & John Fang & Deepak Tanneeru & Manjari Des, 2023. "South Asian medical cohorts reveal strong founder effects and high rates of homozygosity," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    10. Andrew D. Grotzinger & Travis T. Mallard & Zhaowen Liu & Jakob Seidlitz & Tian Ge & Jordan W. Smoller, 2023. "Multivariate genomic architecture of cortical thickness and surface area at multiple levels of analysis," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    11. Matthias Wuttke & Eva König & Maria-Alexandra Katsara & Holger Kirsten & Saeed Khomeijani Farahani & Alexander Teumer & Yong Li & Martin Lang & Burulca Göcmen & Cristian Pattaro & Dorothee Günzel & An, 2023. "Imputation-powered whole-exome analysis identifies genes associated with kidney function and disease in the UK Biobank," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    12. Ananyo Choudhury & Jean-Tristan Brandenburg & Tinashe Chikowore & Dhriti Sengupta & Palwende Romuald Boua & Nigel J. Crowther & Godfred Agongo & Gershim Asiki & F. Xavier Gómez-Olivé & Isaac Kisiangan, 2022. "Meta-analysis of sub-Saharan African studies provides insights into genetic architecture of lipid traits," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    13. Derek W. Brown & Liam D. Cato & Yajie Zhao & Satish K. Nandakumar & Erik L. Bao & Eugene J. Gardner & Aubrey K. Hubbard & Alexander DePaulis & Thomas Rehling & Lei Song & Kai Yu & Stephen J. Chanock &, 2023. "Shared and distinct genetic etiologies for different types of clonal hematopoiesis," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    14. Saaket Agrawal & Minxian Wang & Marcus D. R. Klarqvist & Kirk Smith & Joseph Shin & Hesam Dashti & Nathaniel Diamant & Seung Hoan Choi & Sean J. Jurgens & Patrick T. Ellinor & Anthony Philippakis & Me, 2022. "Inherited basis of visceral, abdominal subcutaneous and gluteofemoral fat depots," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    15. Benjamin B. Sun & Stephanie J. Loomis & Fabrizio Pizzagalli & Natalia Shatokhina & Jodie N. Painter & Christopher N. Foley & Megan E. Jensen & Donald G. McLaren & Sai Spandana Chintapalli & Alyssa H. , 2022. "Genetic map of regional sulcal morphology in the human brain from UK biobank data," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    16. Qingbo S. Wang & Ryuya Edahiro & Ho Namkoong & Takanori Hasegawa & Yuya Shirai & Kyuto Sonehara & Hiromu Tanaka & Ho Lee & Ryunosuke Saiki & Takayoshi Hyugaji & Eigo Shimizu & Kotoe Katayama & Masahir, 2022. "The whole blood transcriptional regulation landscape in 465 COVID-19 infected samples from Japan COVID-19 Task Force," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    17. Erik Schoenmakers & Federica Marelli & Helle F. Jørgensen & W. Edward Visser & Carla Moran & Stefan Groeneweg & Carolina Avalos & Sean J. Jurgens & Nichola Figg & Alison Finigan & Neha Wali & Maura Ag, 2023. "Selenoprotein deficiency disorder predisposes to aortic aneurysm formation," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    18. Xiaoyi Raymond Gao & Marion Chiariglione & Alexander J. Arch, 2022. "Whole-exome sequencing study identifies rare variants and genes associated with intraocular pressure and glaucoma," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    19. Nazia Pathan & Wei Q. Deng & Matteo Di Scipio & Mohammad Khan & Shihong Mao & Robert W. Morton & Ricky Lali & Marie Pigeyre & Michael R. Chong & Guillaume Paré, 2024. "A method to estimate the contribution of rare coding variants to complex trait heritability," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    20. Margaret Sunitha Selvaraj & Xihao Li & Zilin Li & Akhil Pampana & David Y. Zhang & Joseph Park & Stella Aslibekyan & Joshua C. Bis & Jennifer A. Brody & Brian E. Cade & Lee-Ming Chuang & Ren-Hua Chung, 2022. "Whole genome sequence analysis of blood lipid levels in >66,000 individuals," Nature Communications, Nature, vol. 13(1), pages 1-18, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-41185-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.