IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-024-54801-1.html
   My bibliography  Save this article

Identification and structure-guided development of triazole urea-based selective antagonists of Arabidopsis karrikin signaling

Author

Listed:
  • Jianwen Wang

    (The University of Tokyo)

  • Ikuo Takahashi

    (The University of Tokyo)

  • Ko Kikuzato

    (The University of Tokyo)

  • Toshihiko Sakai

    (The University of Tokyo)

  • Zhangliang Zhu

    (The University of Tokyo
    Kyoto University)

  • Kai Jiang

    (The University of Tokyo
    Yunnan University)

  • Hidemitsu Nakamura

    (The University of Tokyo)

  • Takeshi Nakano

    (Kyoto University)

  • Masaru Tanokura

    (The University of Tokyo)

  • Takuya Miyakawa

    (The University of Tokyo
    Kyoto University)

  • Tadao Asami

    (The University of Tokyo
    Yokohama City University)

Abstract

The smoke-derived butenolides, karrikins (KARs), regulate many aspects of plant growth and development. However, KARs and a plant hormone, strigolactones (SLs), have high resemblance in signal perception and transduction, making it hard to delineate KARs response due to the shortage of chemical-genetic tools. Here, we identify a triazole urea KK181N1 as an inhibitor of the KARs receptor KAI2. KK181N1 selectively depress the KAR-induced phenotypes in Arabidopsis. We further elucidate the antagonistic, KAI2 binding mechanism of KK181N1, showing that KK181N1 binds to the catalytic pockets of KAI2 in a non-covalent binding manner. Our experiments also demonstrate the binding affinity of triazole urea compounds are regulated by the structured water molecule networks. By fine-tuning this network, we successfully develop a more potent derivative of KK181N1. We anticipate that these chemicals will be applicable to the elucidation of KARs biology, especially for discriminating the molecular and physiological aspects of KARs and SL signaling.

Suggested Citation

  • Jianwen Wang & Ikuo Takahashi & Ko Kikuzato & Toshihiko Sakai & Zhangliang Zhu & Kai Jiang & Hidemitsu Nakamura & Takeshi Nakano & Masaru Tanokura & Takuya Miyakawa & Tadao Asami, 2025. "Identification and structure-guided development of triazole urea-based selective antagonists of Arabidopsis karrikin signaling," Nature Communications, Nature, vol. 16(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-024-54801-1
    DOI: 10.1038/s41467-024-54801-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-54801-1
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-54801-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Yuqun Xu & Takuya Miyakawa & Shohei Nosaki & Akira Nakamura & Ying Lyu & Hidemitsu Nakamura & Umeharu Ohto & Hanako Ishida & Toshiyuki Shimizu & Tadao Asami & Masaru Tanokura, 2018. "Structural analysis of HTL and D14 proteins reveals the basis for ligand selectivity in Striga," Nature Communications, Nature, vol. 9(1), pages 1-11, December.
    2. Ruifeng Yao & Zhenhua Ming & Liming Yan & Suhua Li & Fei Wang & Sui Ma & Caiting Yu & Mai Yang & Li Chen & Linhai Chen & Yuwen Li & Chun Yan & Di Miao & Zhongyuan Sun & Jianbin Yan & Yuna Sun & Lei Wa, 2016. "DWARF14 is a non-canonical hormone receptor for strigolactone," Nature, Nature, vol. 536(7617), pages 469-473, August.
    3. Feng Zhou & Qibing Lin & Lihong Zhu & Yulong Ren & Kunneng Zhou & Nitzan Shabek & Fuqing Wu & Haibin Mao & Wei Dong & Lu Gan & Weiwei Ma & He Gao & Jun Chen & Chao Yang & Dan Wang & Junjie Tan & Xin Z, 2013. "D14–SCFD3-dependent degradation of D53 regulates strigolactone signalling," Nature, Nature, vol. 504(7480), pages 406-410, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dawei Wang & Zhili Pang & Haiyang Yu & Benjamin Thiombiano & Aimee Walmsley & Shuyi Yu & Yingying Zhang & Tao Wei & Lu Liang & Jing Wang & Xin Wen & Harro J. Bouwmeester & Ruifeng Yao & Zhen Xi, 2022. "Probing strigolactone perception mechanisms with rationally designed small-molecule agonists stimulating germination of root parasitic weeds," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    2. Kyoichi Kodama & Mélanie K. Rich & Akiyoshi Yoda & Shota Shimazaki & Xiaonan Xie & Kohki Akiyama & Yohei Mizuno & Aino Komatsu & Yi Luo & Hidemasa Suzuki & Hiromu Kameoka & Cyril Libourel & Jean Kelle, 2022. "An ancestral function of strigolactones as symbiotic rhizosphere signals," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    3. Wenlong Yang & Ameer Ahmed Mirbahar & Muhammad Shoaib & Xueyuan Lou & Linhe Sun & Jiazhu Sun & Kehui Zhan & Aimin Zhang, 2022. "The Carotenoid Cleavage Dioxygenase Gene CCD7-B , at Large, Is Associated with Tillering in Common Wheat," Agriculture, MDPI, vol. 12(2), pages 1-14, February.
    4. Eva-Sophie Wallner & Nina Tonn & Dongbo Shi & Laura Luzzietti & Friederike Wanke & Pascal Hunziker & Yingqiang Xu & Ilona Jung & Vadir Lopéz-Salmerón & Michael Gebert & Christian Wenzl & Jan U. Lohman, 2023. "OBERON3 and SUPPRESSOR OF MAX2 1-LIKE proteins form a regulatory module driving phloem development," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    5. Jia Zhou & Qinli Hu & Xinlong Xiao & Deqiang Yao & Shenghong Ge & Jin Ye & Haojie Li & Rujie Cai & Renyang Liu & Fangang Meng & Chao Wang & Jian-Kang Zhu & Mingguang Lei & Weiman Xing, 2021. "Mechanism of phosphate sensing and signaling revealed by rice SPX1-PHR2 complex structure," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    6. Cheng Luo & Xin-Jie Wang & Ai-Ning Ran & Jing-Jing Song & Xin Li & Qi-Qi Ma & Yuan-Zhi Pan & Qing-Lin Liu & Bei-Bei Jiang, 2021. "Expression Analysis of DgD14 , DgBRC1 and DgLsL in the Process of Chrysanthemum Lateral Bud Formation," Agriculture, MDPI, vol. 11(12), pages 1-12, December.
    7. Malathy Palayam & Linyi Yan & Ugrappa Nagalakshmi & Amelia K. Gilio & David Cornu & François-Didier Boyer & Savithramma P. Dinesh-Kumar & Nitzan Shabek, 2024. "Structural insights into strigolactone catabolism by carboxylesterases reveal a conserved conformational regulation," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    8. Satoshi Ogawa & Songkui Cui & Alexandra R. F. White & David C. Nelson & Satoko Yoshida & Ken Shirasu, 2022. "Strigolactones are chemoattractants for host tropism in Orobanchaceae parasitic plants," Nature Communications, Nature, vol. 13(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-024-54801-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.