IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-55334-3.html
   My bibliography  Save this article

Continuous decoupled redox electrochemical CO2 capture

Author

Listed:
  • Tao Liu

    (Sichuan University & Shenzhen University
    Shenzhen University
    Sichuan University
    Tianfu Yongxing laboratory)

  • Yunpeng Wang

    (Shenzhen University
    Sichuan University)

  • Yifan Wu

    (Sichuan University & Shenzhen University
    Sichuan University
    Tianfu Yongxing laboratory)

  • Wenchuan Jiang

    (Sichuan University
    Tianfu Yongxing laboratory
    Shenzhen University)

  • Yuchao Deng

    (Sichuan University
    Tianfu Yongxing laboratory
    Sichuan University)

  • Qing Li

    (Sichuan University)

  • Cheng Lan

    (Sichuan University
    Tianfu Yongxing laboratory)

  • Zhiyu Zhao

    (Sichuan University
    Tianfu Yongxing laboratory)

  • Liangyu Zhu

    (Shenzhen University
    Sichuan University)

  • Dongsheng Yang

    (Shenzhen University
    Sichuan University)

  • Timothy Noël

    (University of Amsterdam)

  • Heping Xie

    (Sichuan University & Shenzhen University
    Shenzhen University
    Sichuan University
    Tianfu Yongxing laboratory)

Abstract

Electrochemical CO2 capture driven by renewable electricity holds significant potential for efficient decarbonization. However, the widespread adoption of this approach is currently limited by issues such as instability, discontinuity, high energy demand, and challenges in scaling up. In this study, we propose a scalable strategy that addresses these limitations by transforming the conventional single-step electrochemical redox reaction into a stepwise electrochemical-chemical redox process. Specifically, the hydrogen evolution reaction (HER) at the cathode and the oxidation of a redox carrier at the anode are employed to modulate the pH of the electrolyte, thereby facilitating effective CO2 capture. By decoupling the electrochemical swing for CO2 capture from redox carrier regeneration in both temporal and spatial domains, this approach mitigates unwanted side reactions and enhances system stability. Our results demonstrate a stable CO2 capture process sustained for over 200 h, with a electrical work of 49.16 kJe mol-1 CO2 at a current density of 10 mA cm-2. Furthermore, a scaled-up system capable of producing approximately 0.4 kg of pure CO2 per day maintained stable operation for 72 h, highlighting the potential feasibility of this method for large-scale decarbonization applications.

Suggested Citation

  • Tao Liu & Yunpeng Wang & Yifan Wu & Wenchuan Jiang & Yuchao Deng & Qing Li & Cheng Lan & Zhiyu Zhao & Liangyu Zhu & Dongsheng Yang & Timothy Noël & Heping Xie, 2024. "Continuous decoupled redox electrochemical CO2 capture," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-55334-3
    DOI: 10.1038/s41467-024-55334-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-55334-3
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-55334-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Shijian Jin & Min Wu & Yan Jing & Roy G. Gordon & Michael J. Aziz, 2022. "Low energy carbon capture via electrochemically induced pH swing with electrochemical rebalancing," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    2. Yayuan Liu & Hong-Zhou Ye & Kyle M. Diederichsen & Troy Van Voorhis & T. Alan Hatton, 2020. "Electrochemically mediated carbon dioxide separation with quinone chemistry in salt-concentrated aqueous media," Nature Communications, Nature, vol. 11(1), pages 1-11, December.
    3. Hammond, G.P. & Akwe, S.S. Ondo & Williams, S., 2011. "Techno-economic appraisal of fossil-fuelled power generation systems with carbon dioxide capture and storage," Energy, Elsevier, vol. 36(2), pages 975-984.
    4. Xing Li & Xunhua Zhao & Lingyu Zhang & Anmol Mathur & Yu Xu & Zhiwei Fang & Luo Gu & Yuanyue Liu & Yayuan Liu, 2024. "Redox-tunable isoindigos for electrochemically mediated carbon capture," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    5. Xie, Heping & Wu, Yifan & Liu, Tao & Wang, Fuhuan & Chen, Bin & Liang, Bin, 2020. "Low-energy-consumption electrochemical CO2 capture driven by biomimetic phenazine derivatives redox medium," Applied Energy, Elsevier, vol. 259(C).
    6. Andong Liu & Charles B. Musgrave & Xing Li & William A. Goddard & Yayuan Liu, 2024. "Non-aqueous alkoxide-mediated electrochemical carbon capture," Nature Energy, Nature, vol. 9(11), pages 1415-1426, November.
    7. Flavien M. Brethomé & Neil J. Williams & Charles A. Seipp & Michelle K. Kidder & Radu Custelcean, 2018. "Direct air capture of CO2 via aqueous-phase absorption and crystalline-phase release using concentrated solar power," Nature Energy, Nature, vol. 3(7), pages 553-559, July.
    8. Shuai Pang & Shijian Jin & Fengcun Yang & Maia Alberts & Lu Li & Dawei Xi & Roy G. Gordon & Pan Wang & Michael J. Aziz & Yunlong Ji, 2023. "A phenazine-based high-capacity and high-stability electrochemical CO2 capture cell with coupled electricity storage," Nature Energy, Nature, vol. 8(10), pages 1126-1136, October.
    9. Hyowon Seo & T. Alan Hatton, 2023. "Electrochemical direct air capture of CO2 using neutral red as reversible redox-active material," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    10. Peng Zhu & Zhen-Yu Wu & Ahmad Elgazzar & Changxin Dong & Tae-Ung Wi & Feng-Yang Chen & Yang Xia & Yuge Feng & Mohsen Shakouri & Jung Yoon (Timothy) Kim & Zhiwei Fang & T. Alan Hatton & Haotian Wang, 2023. "Continuous carbon capture in an electrochemical solid-electrolyte reactor," Nature, Nature, vol. 618(7967), pages 959-966, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Peng Wang & An Pei & Zhaoxi Chen & Peilin Sun & Chengyi Hu & Xue Wang & Nanfeng Zheng & Guangxu Chen, 2025. "Integrated system for electrolyte recovery, product separation, and CO2 capture in CO2 reduction," Nature Communications, Nature, vol. 16(1), pages 1-10, December.
    2. Zhen Xu & Grace Mapstone & Zeke Coady & Mengnan Wang & Tristan L. Spreng & Xinyu Liu & Davide Molino & Alexander C. Forse, 2024. "Enhancing electrochemical carbon dioxide capture with supercapacitors," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    3. Yaowei Huang & Da Xu & Shuai Deng & Meng Lin, 2024. "A hybrid electro-thermochemical device for methane production from the air," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    4. Hyowon Seo & T. Alan Hatton, 2023. "Electrochemical direct air capture of CO2 using neutral red as reversible redox-active material," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    5. Shijian Jin & Min Wu & Yan Jing & Roy G. Gordon & Michael J. Aziz, 2022. "Low energy carbon capture via electrochemically induced pH swing with electrochemical rebalancing," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    6. Xing Li & Xunhua Zhao & Lingyu Zhang & Anmol Mathur & Yu Xu & Zhiwei Fang & Luo Gu & Yuanyue Liu & Yayuan Liu, 2024. "Redox-tunable isoindigos for electrochemically mediated carbon capture," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    7. Olateju, Babatunde & Kumar, Amit, 2013. "Techno-economic assessment of hydrogen production from underground coal gasification (UCG) in Western Canada with carbon capture and sequestration (CCS) for upgrading bitumen from oil sands," Applied Energy, Elsevier, vol. 111(C), pages 428-440.
    8. Hanak, Dawid P. & Powell, Dante & Manovic, Vasilije, 2017. "Techno-economic analysis of oxy-combustion coal-fired power plant with cryogenic oxygen storage," Applied Energy, Elsevier, vol. 191(C), pages 193-203.
    9. Zhihua Zhang, 2015. "Techno-Economic Assessment of Carbon Capture and Storage Facilities Coupled to Coal-Fired Power Plants," Energy & Environment, , vol. 26(6-7), pages 1069-1080, November.
    10. Peng, Benhong & Zhao, Yinyin & Elahi, Ehsan & Wan, Anxia, 2023. "Can third-party market cooperation solve the dilemma of emissions reduction? A case study of energy investment project conflict analysis in the context of carbon neutrality," Energy, Elsevier, vol. 264(C).
    11. Carapellucci, Roberto & Giordano, Lorena & Vaccarelli, Maura, 2017. "Application of an amine-based CO2 capture system in retrofitting combined gas-steam power plants," Energy, Elsevier, vol. 118(C), pages 808-826.
    12. Khalilpour, Rajab, 2014. "Multi-level investment planning and scheduling under electricity and carbon market dynamics: Retrofit of a power plant with PCC (post-combustion carbon capture) processes," Energy, Elsevier, vol. 64(C), pages 172-186.
    13. Kleijn, René & van der Voet, Ester & Kramer, Gert Jan & van Oers, Lauran & van der Giesen, Coen, 2011. "Metal requirements of low-carbon power generation," Energy, Elsevier, vol. 36(9), pages 5640-5648.
    14. Kate Dooley & Ellycia Harrould‐Kolieb & Anita Talberg, 2021. "Carbon‐dioxide Removal and Biodiversity: A Threat Identification Framework," Global Policy, London School of Economics and Political Science, vol. 12(S1), pages 34-44, April.
    15. Nemet, Gregory F. & Baker, Erin & Jenni, Karen E., 2013. "Modeling the future costs of carbon capture using experts' elicited probabilities under policy scenarios," Energy, Elsevier, vol. 56(C), pages 218-228.
    16. Sebastiano Cupertino, 2013. "Cost-benefit analysis of carbon dioxide capture and storage considering the impact of two different climate change mitigation regimes," ECONOMICS AND POLICY OF ENERGY AND THE ENVIRONMENT, FrancoAngeli Editore, vol. 2013(1), pages 73-89.
    17. Chen, Wei-Hsin & Hou, Yu-Lin & Hung, Chen-I., 2012. "A study of influence of acoustic excitation on carbon dioxide capture by a droplet," Energy, Elsevier, vol. 37(1), pages 311-321.
    18. Nguyen, Ngoc N. & La, Vinh T. & Huynh, Chinh D. & Nguyen, Anh V., 2022. "Technical and economic perspectives of hydrate-based carbon dioxide capture," Applied Energy, Elsevier, vol. 307(C).
    19. Lund, Henrik & Mathiesen, Brian Vad, 2012. "The role of Carbon Capture and Storage in a future sustainable energy system," Energy, Elsevier, vol. 44(1), pages 469-476.
    20. Nakaten, Natalie & Schlüter, Ralph & Azzam, Rafig & Kempka, Thomas, 2014. "Development of a techno-economic model for dynamic calculation of cost of electricity, energy demand and CO2 emissions of an integrated UCG–CCS process," Energy, Elsevier, vol. 66(C), pages 779-790.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-55334-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.