IDEAS home Printed from https://ideas.repec.org/a/nat/natene/v3y2018i7d10.1038_s41560-018-0150-z.html
   My bibliography  Save this article

Direct air capture of CO2 via aqueous-phase absorption and crystalline-phase release using concentrated solar power

Author

Listed:
  • Flavien M. Brethomé

    (Oak Ridge National Laboratory)

  • Neil J. Williams

    (Oak Ridge National Laboratory)

  • Charles A. Seipp

    (Oak Ridge National Laboratory)

  • Michelle K. Kidder

    (Oak Ridge National Laboratory)

  • Radu Custelcean

    (Oak Ridge National Laboratory)

Abstract

Using negative emissions technologies for the net removal of greenhouse gases from the atmosphere could provide a pathway to limit global temperature rises. Direct air capture of carbon dioxide offers the prospect of permanently lowering the atmospheric CO2 concentration, providing that economical and energy-efficient technologies can be developed and deployed on a large scale. Here, we report an approach to direct air capture, at the laboratory scale, using mostly off-the-shelf materials and equipment. First, CO2 absorption is achieved with readily available and environmentally friendly aqueous amino acid solutions (glycine and sarcosine) using a household humidifier. The CO2-loaded solutions are then reacted with a simple guanidine compound, which crystallizes as a very insoluble carbonate salt and regenerates the amino acid sorbent. Finally, effective CO2 release and near-quantitative regeneration of the guanidine compound are achieved by relatively mild heating of the carbonate crystals using concentrated solar power.

Suggested Citation

  • Flavien M. Brethomé & Neil J. Williams & Charles A. Seipp & Michelle K. Kidder & Radu Custelcean, 2018. "Direct air capture of CO2 via aqueous-phase absorption and crystalline-phase release using concentrated solar power," Nature Energy, Nature, vol. 3(7), pages 553-559, July.
  • Handle: RePEc:nat:natene:v:3:y:2018:i:7:d:10.1038_s41560-018-0150-z
    DOI: 10.1038/s41560-018-0150-z
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41560-018-0150-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41560-018-0150-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Vadim Fetisov & Adam M. Gonopolsky & Maria Yu. Zemenkova & Schipachev Andrey & Hadi Davardoost & Amir H. Mohammadi & Masoud Riazi, 2023. "On the Integration of CO 2 Capture Technologies for an Oil Refinery," Energies, MDPI, vol. 16(2), pages 1-19, January.
    2. Zhang, Chen & Zhang, Xinqi & Su, Tingyu & Zhang, Yiheng & Wang, Liwei & Zhu, Xuancan, 2023. "Modification schemes of efficient sorbents for trace CO2 capture," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    3. Zhu, Xuancan & Ge, Tianshu & Yang, Fan & Wang, Ruzhu, 2021. "Design of steam-assisted temperature vacuum-swing adsorption processes for efficient CO2 capture from ambient air," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    4. Paulsen, M.M. & Petersen, S.B. & Lozano, E.M. & Pedersen, T.H., 2024. "Techno-economic study of integrated high-temperature direct air capture with hydrogen-based calcination and Fischer–Tropsch synthesis for jet fuel production," Applied Energy, Elsevier, vol. 369(C).
    5. Jorge Federico Gabitto & Costas Tsouris, 2023. "Reaction Temperature Manipulation as a Process Intensification Approach for CO 2 Absorption," Energies, MDPI, vol. 16(18), pages 1-18, September.
    6. Kate Dooley & Ellycia Harrould‐Kolieb & Anita Talberg, 2021. "Carbon‐dioxide Removal and Biodiversity: A Threat Identification Framework," Global Policy, London School of Economics and Political Science, vol. 12(S1), pages 34-44, April.
    7. Yaowei Huang & Da Xu & Shuai Deng & Meng Lin, 2024. "A hybrid electro-thermochemical device for methane production from the air," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    8. Choe, Changgwon & Cheon, Seunghyun & Kim, Heehyang & Lim, Hankwon, 2023. "Mitigating climate change for negative CO2 emission via syngas methanation: Techno-economic and life-cycle assessments of renewable methane production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 185(C).
    9. Steffen Fahr & Julian Powell & Alice Favero & Anthony J. Giarrusso & Ryan P. Lively & Matthew J. Realff, 2022. "Assessing the physical potential capacity of direct air capture with integrated supply of low‐carbon energy sources," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 12(1), pages 170-188, February.
    10. ElSayed, Mai & Aghahosseini, Arman & Caldera, Upeksha & Breyer, Christian, 2023. "Analysing the techno-economic impact of e-fuels and e-chemicals production for exports and carbon dioxide removal on the energy system of sunbelt countries – Case of Egypt," Applied Energy, Elsevier, vol. 343(C).
    11. Shijian Jin & Min Wu & Yan Jing & Roy G. Gordon & Michael J. Aziz, 2022. "Low energy carbon capture via electrochemically induced pH swing with electrochemical rebalancing," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    12. Yongqiang Wang & Longbing Qu & Hui Ding & Paul Webley & Gang Kevin Li, 2024. "Distributed direct air capture of carbon dioxide by synergistic water harvesting," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    13. Yurou Celine Xiao & Siyu Sonia Sun & Yong Zhao & Rui Kai Miao & Mengyang Fan & Geonhui Lee & Yuanjun Chen & Christine M. Gabardo & Yan Yu & Chenyue Qiu & Zunmin Guo & Xinyue Wang & Panagiotis Papangel, 2024. "Reactive capture of CO2 via amino acid," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    14. Drechsler, Carsten & Agar, David W., 2020. "Intensified integrated direct air capture - power-to-gas process based on H2O and CO2 from ambient air," Applied Energy, Elsevier, vol. 273(C).
    15. Abishek Kasturi & Jorge F. Gabitto & Radu Custelcean & Costas Tsouris, 2021. "A Process Intensification Approach for CO 2 Absorption Using Amino Acid Solutions and a Guanidine Compound," Energies, MDPI, vol. 14(18), pages 1-15, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natene:v:3:y:2018:i:7:d:10.1038_s41560-018-0150-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.