IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-55319-2.html
   My bibliography  Save this article

Biophysical effects of croplands on land surface temperature

Author

Listed:
  • Chi Chen

    (Rutgers University)

  • Yang Li

    (National University of Singapore)

  • Xuhui Wang

    (Peking University)

  • Xiangzhong Luo

    (National University of Singapore)

  • Yue Li

    (University of California)

  • Yu Cheng

    (Harvard University)

  • Zhe Zhu

    (University of Connecticut)

Abstract

Converting natural vegetation to croplands alters the local land surface energy budget. Here, we use two decades of satellite data and a physics-based framework to analyse the biophysical mechanisms by which croplands influence daily mean land surface temperature (LST). Globally, 60% of croplands exhibit an annual warming effect, while 40% have a cooling effect compared to their surrounding natural ecosystems. Aerodynamic resistance is identified as the dominant biophysical factor impacting LST by adjusting latent heat flux. The magnitude of cropland-induced LST change is negatively correlated with the difference in leaf area index between croplands and their surrounding biome types. The strongest warming occurs in temperate dry regions where croplands are surrounded by savannas. However, a lower-than-expected LST disturbance is seen in hot and wet regions where croplands are surrounded by rainforests, attributed to lower cropland fraction and energy limitations. These findings highlight the complex interplay of land use, vegetation, and regional climate, providing valuable insights into sustainable agriculture and land-based climate change mitigation.

Suggested Citation

  • Chi Chen & Yang Li & Xuhui Wang & Xiangzhong Luo & Yue Li & Yu Cheng & Zhe Zhu, 2024. "Biophysical effects of croplands on land surface temperature," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-55319-2
    DOI: 10.1038/s41467-024-55319-2
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-55319-2
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-55319-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Ramdane Alkama & Giovanni Forzieri & Gregory Duveiller & Giacomo Grassi & Shunlin Liang & Alessandro Cescatti, 2022. "Vegetation-based climate mitigation in a warmer and greener World," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    2. Giovanni Forzieri & Diego G. Miralles & Philippe Ciais & Ramdane Alkama & Youngryel Ryu & Gregory Duveiller & Ke Zhang & Eddy Robertson & Markus Kautz & Brecht Martens & Chongya Jiang & Almut Arneth &, 2020. "Increased control of vegetation on global terrestrial energy fluxes," Nature Climate Change, Nature, vol. 10(4), pages 356-362, April.
    3. Xuhui Lee & Michael L. Goulden & David Y. Hollinger & Alan Barr & T. Andrew Black & Gil Bohrer & Rosvel Bracho & Bert Drake & Allen Goldstein & Lianhong Gu & Gabriel Katul & Thomas Kolb & Beverly E. L, 2011. "Observed increase in local cooling effect of deforestation at higher latitudes," Nature, Nature, vol. 479(7373), pages 384-387, November.
    4. Yitao Li & Zhao-Liang Li & Hua Wu & Chenghu Zhou & Xiangyang Liu & Pei Leng & Peng Yang & Wenbin Wu & Ronglin Tang & Guo-Fei Shang & Lingling Ma, 2023. "Biophysical impacts of earth greening can substantially mitigate regional land surface temperature warming," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    5. Lei Zhao & Xuhui Lee & Ronald B. Smith & Keith Oleson, 2014. "Strong contributions of local background climate to urban heat islands," Nature, Nature, vol. 511(7508), pages 216-219, July.
    6. Yan Li & Maosheng Zhao & Safa Motesharrei & Qiaozhen Mu & Eugenia Kalnay & Shuangcheng Li, 2015. "Local cooling and warming effects of forests based on satellite observations," Nature Communications, Nature, vol. 6(1), pages 1-8, May.
    7. Sebastiaan Luyssaert & Mathilde Jammet & Paul C. Stoy & Stephan Estel & Julia Pongratz & Eric Ceschia & Galina Churkina & Axel Don & KarlHeinz Erb & Morgan Ferlicoq & Bert Gielen & Thomas Grünwald & R, 2014. "Land management and land-cover change have impacts of similar magnitude on surface temperature," Nature Climate Change, Nature, vol. 4(5), pages 389-393, May.
    8. Chi Chen & Taejin Park & Xuhui Wang & Shilong Piao & Baodong Xu & Rajiv K. Chaturvedi & Richard Fuchs & Victor Brovkin & Philippe Ciais & Rasmus Fensholt & Hans Tømmervik & Govindasamy Bala & Zaichun , 2019. "China and India lead in greening of the world through land-use management," Nature Sustainability, Nature, vol. 2(2), pages 122-129, February.
    9. Ryan M. Bright & Edouard Davin & Thomas O’Halloran & Julia Pongratz & Kaiguang Zhao & Alessandro Cescatti, 2017. "Local temperature response to land cover and management change driven by non-radiative processes," Nature Climate Change, Nature, vol. 7(4), pages 296-302, April.
    10. Zhenzhong Zeng & Shilong Piao & Laurent Z. X. Li & Liming Zhou & Philippe Ciais & Tao Wang & Yue Li & Xu Lian & Eric F. Wood & Pierre Friedlingstein & Jiafu Mao & Lyndon D. Estes & Ranga B. Myneni & S, 2017. "Climate mitigation from vegetation biophysical feedbacks during the past three decades," Nature Climate Change, Nature, vol. 7(6), pages 432-436, June.
    11. Gregory Duveiller & Josh Hooker & Alessandro Cescatti, 2018. "The mark of vegetation change on Earth’s surface energy balance," Nature Communications, Nature, vol. 9(1), pages 1-12, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yitao Li & Zhao-Liang Li & Hua Wu & Chenghu Zhou & Xiangyang Liu & Pei Leng & Peng Yang & Wenbin Wu & Ronglin Tang & Guo-Fei Shang & Lingling Ma, 2023. "Biophysical impacts of earth greening can substantially mitigate regional land surface temperature warming," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    2. Jun Li & Yao Zhang & Emanuele Bevacqua & Jakob Zscheischler & Trevor F. Keenan & Xu Lian & Sha Zhou & Hongying Zhang & Mingzhu He & Shilong Piao, 2024. "Future increase in compound soil drought-heat extremes exacerbated by vegetation greening," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    3. Xu Lian & Sujong Jeong & Chang-Eui Park & Hao Xu & Laurent Z. X. Li & Tao Wang & Pierre Gentine & Josep Peñuelas & Shilong Piao, 2022. "Biophysical impacts of northern vegetation changes on seasonal warming patterns," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    4. Jingmeng Wang & Wei Li & Philippe Ciais & Laurent Z. X. Li & Jinfeng Chang & Daniel Goll & Thomas Gasser & Xiaomeng Huang & Narayanappa Devaraju & Olivier Boucher, 2021. "Global cooling induced by biophysical effects of bioenergy crop cultivation," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    5. Jun Ge & Qi Liu & Beilei Zan & Zhiqiang Lin & Sha Lu & Bo Qiu & Weidong Guo, 2022. "Deforestation intensifies daily temperature variability in the northern extratropics," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    6. Temesgen Alemayehu Abera & Janne Heiskanen & Eduardo Eiji Maeda & Mohammed Ahmed Muhammed & Netra Bhandari & Ville Vakkari & Binyam Tesfaw Hailu & Petri K. E. Pellikka & Andreas Hemp & Pieter G. Zyl &, 2024. "Deforestation amplifies climate change effects on warming and cloud level rise in African montane forests," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    7. Hao Luo & Johannes Quaas & Yong Han, 2024. "Decreased cloud cover partially offsets the cooling effects of surface albedo change due to deforestation," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    8. Duveiller, Gregory & Caporaso, Luca & Abad-Viñas, Raul & Perugini, Lucia & Grassi, Giacomo & Arneth, Almut & Cescatti, Alessandro, 2020. "Local biophysical effects of land use and land cover change: towards an assessment tool for policy makers," Land Use Policy, Elsevier, vol. 91(C).
    9. Jiang, Shouzheng & Wu, Jie & Wang, Zhihui & He, Ziling & Wang, Mingjun & Yao, Weiwei & Feng, Yu, 2023. "Spatiotemporal variations of cropland carbon sequestration and water loss across China," Agricultural Water Management, Elsevier, vol. 287(C).
    10. Shu Liu & Yong Wang & Guang J. Zhang & Linyi Wei & Bin Wang & Le Yu, 2022. "Contrasting influences of biogeophysical and biogeochemical impacts of historical land use on global economic inequality," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    11. Jing Kong & Yongling Zhao & Jan Carmeliet & Chengwang Lei, 2021. "Urban Heat Island and Its Interaction with Heatwaves: A Review of Studies on Mesoscale," Sustainability, MDPI, vol. 13(19), pages 1-26, September.
    12. Jonas Schwaab & Ronny Meier & Gianluca Mussetti & Sonia Seneviratne & Christine Bürgi & Edouard L. Davin, 2021. "The role of urban trees in reducing land surface temperatures in European cities," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    13. Natalia Hasler & Christopher A. Williams & Vanessa Carrasco Denney & Peter W. Ellis & Surendra Shrestha & Drew E. Terasaki Hart & Nicholas H. Wolff & Samantha Yeo & Thomas W. Crowther & Leland K. Werd, 2024. "Accounting for albedo change to identify climate-positive tree cover restoration," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    14. Bing Li & Zhifeng Liu & Ying Nan & Shengnan Li & Yanmin Yang, 2018. "Comparative Analysis of Urban Heat Island Intensities in Chinese, Russian, and DPRK Regions across the Transnational Urban Agglomeration of the Tumen River in Northeast Asia," Sustainability, MDPI, vol. 10(8), pages 1-16, July.
    15. Giuseppina A. Giorgio & Maria Ragosta & Vito Telesca, 2017. "Climate Variability and Industrial-Suburban Heat Environment in a Mediterranean Area," Sustainability, MDPI, vol. 9(5), pages 1-10, May.
    16. David Hidalgo García & Julián Arco Díaz & Adelaida Martín Martín & Emilio Gómez Cobos, 2022. "Spatiotemporal Analysis of Urban Thermal Effects Caused by Heat Waves through Remote Sensing," Sustainability, MDPI, vol. 14(19), pages 1-24, September.
    17. Li, Ruibin & Zhao, Yi & Chang, Min & Zeng, Fanxing & Wu, Yan & Wang, Liangzhu (Leon) & Niu, Jianlei & Shi, Xing & Gao, Naiping, 2024. "Numerical simulation methods of tree effects on microclimate: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 205(C).
    18. Nikolai Dronin, 2023. "Reasons to rename the UNCCD: Review of transformation of the political concept through the influence of science," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(3), pages 2058-2078, March.
    19. Ali Ismaeel & Amos P. K. Tai & Erone Ghizoni Santos & Heveakore Maraia & Iris Aalto & Jan Altman & Jiří Doležal & Jonas J. Lembrechts & José Luís Camargo & Juha Aalto & Kateřina Sam & Lair Cristina Av, 2024. "Patterns of tropical forest understory temperatures," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    20. Pinki Mondal & Sonali Shukla McDermid, 2021. "Editorial for Special Issue: “Global Vegetation and Land Surface Dynamics in a Changing Climate”," Land, MDPI, vol. 10(1), pages 1-4, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-55319-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.