IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-55234-6.html
   My bibliography  Save this article

Spin-polarized lasing in manganese doped perovskite microcrystals

Author

Listed:
  • Penghao Li

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Zhonghao Zhou

    (Chinese Academy of Sciences)

  • Guangliu Ran

    (Beijing Normal University)

  • Tongjin Zhang

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Zhengjun Jiang

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Haidi Liu

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Wenkai Zhang

    (Beijing Normal University)

  • Yongli Yan

    (Chinese Academy of Sciences)

  • Jiannian Yao

    (Chinese Academy of Sciences)

  • Haiyun Dong

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Yong Sheng Zhao

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

Abstract

Spin-polarized lasers have demonstrated many superiorities over conventional lasers in both performance and functionalities. Hybrid organic-inorganic perovskites are emerging spintronic materials with great potential for advancing spin-polarized laser technology. However, the rapid carrier spin relaxation process in hybrid perovskites presents a major bottleneck for spin-polarized lasing. Here we report the identification and successful suppression of the spin relaxation mechanism in perovskites for the experimental realization of spin-polarized perovskite lasers. The electron-hole exchange interaction is identified as the decisive spin relaxation mechanism hindering the realization of spin-polarized lasing in perovskite microcrystals. An ion doping strategy is employed accordingly to introduce a new energy level in perovskites, which enables a long carrier spin lifetime by suppressing the electron-hole exchange interaction. As a result, spin-polarized lasing is achieved in the doped perovskite microcrystals. Moreover, the doped cation is a magnetic species allowing for the magnetic field control of the spin-polarized perovskite lasing. This work unlocks the potential of perovskites for spin-polarized lasers, providing guidance for the design of perovskites towards spintronic devices.

Suggested Citation

  • Penghao Li & Zhonghao Zhou & Guangliu Ran & Tongjin Zhang & Zhengjun Jiang & Haidi Liu & Wenkai Zhang & Yongli Yan & Jiannian Yao & Haiyun Dong & Yong Sheng Zhao, 2024. "Spin-polarized lasing in manganese doped perovskite microcrystals," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-55234-6
    DOI: 10.1038/s41467-024-55234-6
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-55234-6
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-55234-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Weijie Zhao & Rui Su & Yuqing Huang & Jinqi Wu & Chee Fai Fong & Jiangang Feng & Qihua Xiong, 2020. "Transient circular dichroism and exciton spin dynamics in all-inorganic halide perovskites," Nature Communications, Nature, vol. 11(1), pages 1-7, December.
    2. Markus Lindemann & Gaofeng Xu & Tobias Pusch & Rainer Michalzik & Martin R. Hofmann & Igor Žutić & Nils C. Gerhardt, 2019. "Ultrafast spin-lasers," Nature, Nature, vol. 568(7751), pages 212-215, April.
    3. David Giovanni & Jia Wei Melvin Lim & Zhongcheng Yuan & Swee Sien Lim & Marcello Righetto & Jian Qing & Qiannan Zhang & Herlina Arianita Dewi & Feng Gao & Subodh Gautam Mhaisalkar & Nripan Mathews & T, 2019. "Ultrafast long-range spin-funneling in solution-processed Ruddlesden–Popper halide perovskites," Nature Communications, Nature, vol. 10(1), pages 1-8, December.
    4. Peter Lodahl & Sahand Mahmoodian & Søren Stobbe & Arno Rauschenbeutel & Philipp Schneeweiss & Jürgen Volz & Hannes Pichler & Peter Zoller, 2017. "Chiral quantum optics," Nature, Nature, vol. 541(7638), pages 473-480, January.
    5. Evan Lafalce & Eric Amerling & Zhi-Gang Yu & Peter C. Sercel & Luisa Whittaker-Brooks & Z. Valy Vardeny, 2022. "Rashba splitting in organic–inorganic lead–halide perovskites revealed through two-photon absorption spectroscopy," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rui Cai & Indrajit Wadgaonkar & Jia Wei Melvin Lim & Stefano Dal Forno & David Giovanni & Minjun Feng & Senyun Ye & Marco Battiato & Tze Chien Sum, 2023. "Zero-field quantum beats and spin decoherence mechanisms in CsPbBr3 perovskite nanocrystals," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    2. Weitao Yuan & Chenwen Yang & Danmei Zhang & Yang Long & Yongdong Pan & Zheng Zhong & Hong Chen & Jinfeng Zhao & Jie Ren, 2021. "Observation of elastic spin with chiral meta-sources," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    3. Jiawei Lv & Jeong Hyun Han & Geonho Han & Seongmin An & Seung Ju Kim & Ryeong Myeong Kim & Jung‐El Ryu & Rena Oh & Hyuckjin Choi & In Han Ha & Yoon Ho Lee & Minje Kim & Gyeong-Su Park & Ho Won Jang & , 2024. "Spatiotemporally modulated full-polarized light emission for multiplexed optical encryption," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    4. Elena S. Redchenko & Alexander V. Poshakinskiy & Riya Sett & Martin Žemlička & Alexander N. Poddubny & Johannes M. Fink, 2023. "Tunable directional photon scattering from a pair of superconducting qubits," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    5. Xiaolin Lu & Xujie Wang & Shuangshuang Wang & Tao Ding, 2023. "Polarization-directed growth of spiral nanostructures by laser direct writing with vector beams," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    6. Mathias J. R. Staunstrup & Alexey Tiranov & Ying Wang & Sven Scholz & Andreas D. Wieck & Arne Ludwig & Leonardo Midolo & Nir Rotenberg & Peter Lodahl & Hanna Le Jeannic, 2024. "Direct observation of a few-photon phase shift induced by a single quantum emitter in a waveguide," Nature Communications, Nature, vol. 15(1), pages 1-5, December.
    7. Yifan Xie & Shuo Feng & Linxiao Deng & Aoran Cai & Liyu Gan & Zifan Jiang & Peng Yang & Guilin Ye & Zaiqing Liu & Li Wen & Qing Zhu & Wanjun Zhang & Zhanpeng Zhang & Jiahe Li & Zeyu Feng & Chutian Zha, 2023. "Inverse design of chiral functional films by a robotic AI-guided system," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    8. Chuanzhao Li & Mykola Telychko & Yue Zheng & Shurong Yuan & Zhenyue Wu & Walter P. D. Wong & Yixin Li & Yuanyuan Jin & Weng Fu Io & Xinyun Wang & Junhao Lin & Jianhua Hao & Cheng Han & Kai Leng, 2024. "Switchable planar chirality and spin texture in highly ordered ferroelectric hybrid perovskite domains," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    9. Junqing Xu & Kejun Li & Uyen N. Huynh & Mayada Fadel & Jinsong Huang & Ravishankar Sundararaman & Valy Vardeny & Yuan Ping, 2024. "How spin relaxes and dephases in bulk halide perovskites," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    10. Longlong Yang & Yu Yuan & Bowen Fu & Jingnan Yang & Danjie Dai & Shushu Shi & Sai Yan & Rui Zhu & Xu Han & Hancong Li & Zhanchun Zuo & Can Wang & Yuan Huang & Kuijuan Jin & Qihuang Gong & Xiulai Xu, 2023. "Revealing broken valley symmetry of quantum emitters in WSe2 with chiral nanocavities," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    11. Andrew H. Salij & Randall H. Goldsmith & Roel Tempelaar, 2024. "Theory predicts 2D chiral polaritons based on achiral Fabry–Pérot cavities using apparent circular dichroism," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    12. Dmitrii Gromyko & Shu An & Sergey Gorelik & Jiahui Xu & Li Jun Lim & Henry Yit Loong Lee & Febiana Tjiptoharsono & Zhi-Kuang Tan & Cheng-Wei Qiu & Zhaogang Dong & Lin Wu, 2024. "Unidirectional Chiral Emission via Twisted Bi-layer Metasurfaces," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    13. Shen, Zhenye & Huang, Yu & Zhou, Pei & Mu, Penghua & Zhu, Xin & Li, Nianqiang, 2024. "Quantum-dot spin-VCSELs subject to optical injection and feedback for flexible photonic millimeter wave generation," Chaos, Solitons & Fractals, Elsevier, vol. 186(C).
    14. Hongwei Wang & Anshuman Kumar & Siyuan Dai & Xiao Lin & Zubin Jacob & Sang-Hyun Oh & Vinod Menon & Evgenii Narimanov & Young Duck Kim & Jian-Ping Wang & Phaedon Avouris & Luis Martin Moreno & Joshua C, 2024. "Planar hyperbolic polaritons in 2D van der Waals materials," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    15. Huacheng Li & Xin Xu & Rongcheng Guan & Artur Movsesyan & Zhenni Lu & Qiliang Xu & Ziyun Jiang & Yurong Yang & Majid Khan & Jin Wen & Hongwei Wu & Santiago Moya & Gil Markovich & Huatian Hu & Zhiming , 2024. "Collective chiroptical activity through the interplay of excitonic and charge-transfer effects in localized plasmonic fields," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    16. Angelica Simbula & Luyan Wu & Federico Pitzalis & Riccardo Pau & Stefano Lai & Fang Liu & Selene Matta & Daniela Marongiu & Francesco Quochi & Michele Saba & Andrea Mura & Giovanni Bongiovanni, 2023. "Exciton dissociation in 2D layered metal-halide perovskites," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    17. Wang, Xin & Huang, Kai-Wei & Qiu, Qing-Yang & Xiong, Hao, 2023. "Nonreciprocal double-carrier frequency combs in cavity magnonics," Chaos, Solitons & Fractals, Elsevier, vol. 176(C).
    18. Haining Zheng & Arup Ghosh & M. J. Swamynadhan & Qihan Zhang & Walter P. D. Wong & Zhenyue Wu & Rongrong Zhang & Jingsheng Chen & Fanica Cimpoesu & Saurabh Ghosh & Branton J. Campbell & Kai Wang & Ale, 2024. "Chiral multiferroicity in two-dimensional hybrid organic-inorganic perovskites," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    19. Wenkai Zhu & Yingmei Zhu & Tong Zhou & Xianpeng Zhang & Hailong Lin & Qirui Cui & Faguang Yan & Ziao Wang & Yongcheng Deng & Hongxin Yang & Lixia Zhao & Igor Žutić & Kirill D. Belashchenko & Kaiyou Wa, 2023. "Large and tunable magnetoresistance in van der Waals ferromagnet/semiconductor junctions," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    20. Jacques Doumani & Minhan Lou & Oliver Dewey & Nina Hong & Jichao Fan & Andrey Baydin & Keshav Zahn & Yohei Yomogida & Kazuhiro Yanagi & Matteo Pasquali & Riichiro Saito & Junichiro Kono & Weilu Gao, 2023. "Engineering chirality at wafer scale with ordered carbon nanotube architectures," Nature Communications, Nature, vol. 14(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-55234-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.