IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-55072-6.html
   My bibliography  Save this article

Artificial intelligence-driven rational design of ionizable lipids for mRNA delivery

Author

Listed:
  • Wei Wang

    (University of Macau
    University of Macau)

  • Kepan Chen

    (Fudan University
    Fudan University)

  • Ting Jiang

    (Fudan University
    Ltd)

  • Yiyang Wu

    (University of Macau
    University of Macau)

  • Zheng Wu

    (University of Macau
    University of Macau)

  • Hang Ying

    (Fudan University
    Ltd)

  • Hang Yu

    (Fudan University
    Ltd)

  • Jing Lu

    (Fudan University
    Ltd)

  • Jinzhong Lin

    (Fudan University
    Fudan University)

  • Defang Ouyang

    (University of Macau
    University of Macau)

Abstract

Lipid nanoparticles (LNPs) have proven effective in mRNA delivery, as evidenced by COVID-19 vaccines. Its key ingredient, ionizable lipids, is traditionally optimized by inefficient and costly experimental screening. This study leverages artificial intelligence (AI) and virtual screening to facilitate the rational design of ionizable lipids by predicting two key properties of LNPs, apparent pKa and mRNA delivery efficiency. Nearly 20 million ionizable lipids were evaluated through two iterations of AI-driven generation and screening, yielding three and six new molecules, respectively. In mouse test validation, one lipid from the initial iteration, featuring a benzene ring, demonstrated performance comparable to the control DLin-MC3-DMA (MC3). Notably, all six lipids from the second iteration equaled or outperformed MC3, with one exhibiting efficacy akin to a superior control lipid SM-102. Furthermore, the AI model is interpretable in structure-activity relationships.

Suggested Citation

  • Wei Wang & Kepan Chen & Ting Jiang & Yiyang Wu & Zheng Wu & Hang Ying & Hang Yu & Jing Lu & Jinzhong Lin & Defang Ouyang, 2024. "Artificial intelligence-driven rational design of ionizable lipids for mRNA delivery," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-55072-6
    DOI: 10.1038/s41467-024-55072-6
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-55072-6
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-55072-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Marco Maugeri & Muhammad Nawaz & Alexandros Papadimitriou & Annelie Angerfors & Alessandro Camponeschi & Manli Na & Mikko Hölttä & Pia Skantze & Svante Johansson & Martina Sundqvist & Johnny Lindquist, 2019. "Linkage between endosomal escape of LNP-mRNA and loading into EVs for transport to other cells," Nature Communications, Nature, vol. 10(1), pages 1-15, December.
    2. Pauric Bannigan & Zeqing Bao & Riley J. Hickman & Matteo Aldeghi & Florian Häse & Alán Aspuru-Guzik & Christine Allen, 2023. "Machine learning models to accelerate the design of polymeric long-acting injectables," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    3. Kathryn A. Whitehead & J. Robert Dorkin & Arturo J. Vegas & Philip H. Chang & Omid Veiseh & Jonathan Matthews & Owen S. Fenton & Yunlong Zhang & Karsten T. Olejnik & Volkan Yesilyurt & Delai Chen & Sc, 2014. "Degradable lipid nanoparticles with predictable in vivo siRNA delivery activity," Nature Communications, Nature, vol. 5(1), pages 1-10, September.
    4. Lei Miao & Jiaqi Lin & Yuxuan Huang & Linxian Li & Derfogail Delcassian & Yifan Ge & Yunhua Shi & Daniel G. Anderson, 2020. "Synergistic lipid compositions for albumin receptor mediated delivery of mRNA to the liver," Nature Communications, Nature, vol. 11(1), pages 1-13, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xuexiang Han & Junchao Xu & Ying Xu & Mohamad-Gabriel Alameh & Lulu Xue & Ningqiang Gong & Rakan El-Mayta & Rohan Palanki & Claude C. Warzecha & Gan Zhao & Andrew E. Vaughan & James M. Wilson & Drew W, 2024. "In situ combinatorial synthesis of degradable branched lipidoids for systemic delivery of mRNA therapeutics and gene editors," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    2. Xuexiang Han & Hanwen Zhang & Kamila Butowska & Kelsey L. Swingle & Mohamad-Gabriel Alameh & Drew Weissman & Michael J. Mitchell, 2021. "An ionizable lipid toolbox for RNA delivery," Nature Communications, Nature, vol. 12(1), pages 1-6, December.
    3. Yue Xu & Shihao Ma & Haotian Cui & Jingan Chen & Shufen Xu & Fanglin Gong & Alex Golubovic & Muye Zhou & Kevin Chang Wang & Andrew Varley & Rick Xing Ze Lu & Bo Wang & Bowen Li, 2024. "AGILE platform: a deep learning powered approach to accelerate LNP development for mRNA delivery," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    4. Man Wu & Pok Man Hau & Linxian Li & Chi Man Tsang & Yike Yang & Aziz Taghbalout & Grace Tin-Yun Chung & Shin Yee Hui & Wing Chung Tang & Nathaniel Jillette & Jacqueline Jufen Zhu & Horace Hok Yeung Le, 2024. "Synthetic BZLF1-targeted transcriptional activator for efficient lytic induction therapy against EBV-associated epithelial cancers," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    5. Ziyu Zhou & Yu Feng & Mingzhou Jiang & Zijun Yao & Jing Wang & Feng Pan & Rulan Feng & Chong Zhao & Yinyu Ma & Jinge Zhou & Lei Sun & Xiaotian Sun & Changyou Zhan & Xiao He & Kuan Jiang & Jiahui Yu & , 2025. "Ionizable polymeric micelles (IPMs) for efficient siRNA delivery," Nature Communications, Nature, vol. 16(1), pages 1-15, December.
    6. Kai Liu & Ralf Nilsson & Elisa Lázaro-Ibáñez & Hanna Duàn & Tasso Miliotis & Marie Strimfors & Michael Lerche & Ana Rita Salgado Ribeiro & Johan Ulander & Daniel Lindén & Anna Salvati & Alan Sabirsh, 2023. "Multiomics analysis of naturally efficacious lipid nanoparticle coronas reveals high-density lipoprotein is necessary for their function," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    7. Mengjie Zhang & Abid Hussain & Bo Hu & Haiyin Yang & Chunhui Li & Shuai Guo & Xiaofeng Han & Bei Li & Yunlu Dai & Yuhong Cao & Hang Chi & Yuhua Weng & Cheng-Feng Qin & Yuanyu Huang, 2024. "Atavistic strategy for the treatment of hyperuricemia via ionizable liposomal mRNA," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    8. Xuexiang Han & Ningqiang Gong & Lulu Xue & Margaret M. Billingsley & Rakan El-Mayta & Sarah J. Shepherd & Mohamad-Gabriel Alameh & Drew Weissman & Michael J. Mitchell, 2023. "Ligand-tethered lipid nanoparticles for targeted RNA delivery to treat liver fibrosis," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    9. Roy Pattipeiluhu & Ye Zeng & Marco M.R.M. Hendrix & Ilja K. Voets & Alexander Kros & Thomas H. Sharp, 2024. "Liquid crystalline inverted lipid phases encapsulating siRNA enhance lipid nanoparticle mediated transfection," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    10. Kexin Su & Lu Shi & Tao Sheng & Xinxin Yan & Lixin Lin & Chaoyang Meng & Shiqi Wu & Yuxuan Chen & Yao Zhang & Chaorong Wang & Zichuan Wang & Junjie Qiu & Jiahui Zhao & Tengfei Xu & Yuan Ping & Zhen Gu, 2024. "Reformulating lipid nanoparticles for organ-targeted mRNA accumulation and translation," Nature Communications, Nature, vol. 15(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-55072-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.