Degradable lipid nanoparticles with predictable in vivo siRNA delivery activity
Author
Abstract
Suggested Citation
DOI: 10.1038/ncomms5277
Download full text from publisher
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Xuexiang Han & Ningqiang Gong & Lulu Xue & Margaret M. Billingsley & Rakan El-Mayta & Sarah J. Shepherd & Mohamad-Gabriel Alameh & Drew Weissman & Michael J. Mitchell, 2023. "Ligand-tethered lipid nanoparticles for targeted RNA delivery to treat liver fibrosis," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
- Xuexiang Han & Junchao Xu & Ying Xu & Mohamad-Gabriel Alameh & Lulu Xue & Ningqiang Gong & Rakan El-Mayta & Rohan Palanki & Claude C. Warzecha & Gan Zhao & Andrew E. Vaughan & James M. Wilson & Drew W, 2024. "In situ combinatorial synthesis of degradable branched lipidoids for systemic delivery of mRNA therapeutics and gene editors," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
- Xuexiang Han & Hanwen Zhang & Kamila Butowska & Kelsey L. Swingle & Mohamad-Gabriel Alameh & Drew Weissman & Michael J. Mitchell, 2021. "An ionizable lipid toolbox for RNA delivery," Nature Communications, Nature, vol. 12(1), pages 1-6, December.
- Mengjie Zhang & Abid Hussain & Bo Hu & Haiyin Yang & Chunhui Li & Shuai Guo & Xiaofeng Han & Bei Li & Yunlu Dai & Yuhong Cao & Hang Chi & Yuhua Weng & Cheng-Feng Qin & Yuanyu Huang, 2024. "Atavistic strategy for the treatment of hyperuricemia via ionizable liposomal mRNA," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
- Roy Pattipeiluhu & Ye Zeng & Marco M.R.M. Hendrix & Ilja K. Voets & Alexander Kros & Thomas H. Sharp, 2024. "Liquid crystalline inverted lipid phases encapsulating siRNA enhance lipid nanoparticle mediated transfection," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
- Yue Xu & Shihao Ma & Haotian Cui & Jingan Chen & Shufen Xu & Fanglin Gong & Alex Golubovic & Muye Zhou & Kevin Chang Wang & Andrew Varley & Rick Xing Ze Lu & Bo Wang & Bowen Li, 2024. "AGILE platform: a deep learning powered approach to accelerate LNP development for mRNA delivery," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:5:y:2014:i:1:d:10.1038_ncomms5277. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.