IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v11y2020i1d10.1038_s41467-020-16248-y.html
   My bibliography  Save this article

Synergistic lipid compositions for albumin receptor mediated delivery of mRNA to the liver

Author

Listed:
  • Lei Miao

    (Massachusetts Institute of Technology)

  • Jiaqi Lin

    (Massachusetts Institute of Technology)

  • Yuxuan Huang

    (Massachusetts Institute of Technology)

  • Linxian Li

    (Massachusetts Institute of Technology
    Karolinska Institutet)

  • Derfogail Delcassian

    (Massachusetts Institute of Technology
    Boston Children’s Hospital
    University of Nottingham)

  • Yifan Ge

    (Massachusetts General Hospital
    Harvard Medical School)

  • Yunhua Shi

    (Massachusetts Institute of Technology)

  • Daniel G. Anderson

    (Massachusetts Institute of Technology
    Boston Children’s Hospital
    Massachusetts Institute of Technology
    Massachusetts Institute of Technology)

Abstract

Lipid-like nanoparticles (LNPs) have potential as non-viral delivery systems for mRNA therapies. However, repeated administrations of LNPs may lead to accumulation of delivery materials and associated toxicity. To address this challenge, we have developed biodegradable lipids which improve LNPs clearance and reduce toxicity. We modify the backbone structure of Dlin-MC3-DMA by introducing alkyne and ester groups into the lipid tails. We evaluate the performance of these lipids when co-formulated with other amine containing lipid-like materials. We demonstrate that these formulations synergistically facilitate robust mRNA delivery with improved tolerability after single and repeated administrations. We further identify albumin-associated macropinocytosis and endocytosis as an ApoE-independent LNP cellular uptake pathway in the liver. Separately, the inclusion of alkyne lipids significantly increases membrane fusion to enhance mRNA release, leading to synergistic improvement of mRNA delivery. We believe that the rational design of LNPs with multiple amine-lipids increases the material space for mRNA delivery.

Suggested Citation

  • Lei Miao & Jiaqi Lin & Yuxuan Huang & Linxian Li & Derfogail Delcassian & Yifan Ge & Yunhua Shi & Daniel G. Anderson, 2020. "Synergistic lipid compositions for albumin receptor mediated delivery of mRNA to the liver," Nature Communications, Nature, vol. 11(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-16248-y
    DOI: 10.1038/s41467-020-16248-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-020-16248-y
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-020-16248-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Man Wu & Pok Man Hau & Linxian Li & Chi Man Tsang & Yike Yang & Aziz Taghbalout & Grace Tin-Yun Chung & Shin Yee Hui & Wing Chung Tang & Nathaniel Jillette & Jacqueline Jufen Zhu & Horace Hok Yeung Le, 2024. "Synthetic BZLF1-targeted transcriptional activator for efficient lytic induction therapy against EBV-associated epithelial cancers," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    2. Xuexiang Han & Junchao Xu & Ying Xu & Mohamad-Gabriel Alameh & Lulu Xue & Ningqiang Gong & Rakan El-Mayta & Rohan Palanki & Claude C. Warzecha & Gan Zhao & Andrew E. Vaughan & James M. Wilson & Drew W, 2024. "In situ combinatorial synthesis of degradable branched lipidoids for systemic delivery of mRNA therapeutics and gene editors," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    3. Xuexiang Han & Hanwen Zhang & Kamila Butowska & Kelsey L. Swingle & Mohamad-Gabriel Alameh & Drew Weissman & Michael J. Mitchell, 2021. "An ionizable lipid toolbox for RNA delivery," Nature Communications, Nature, vol. 12(1), pages 1-6, December.
    4. Kai Liu & Ralf Nilsson & Elisa Lázaro-Ibáñez & Hanna Duàn & Tasso Miliotis & Marie Strimfors & Michael Lerche & Ana Rita Salgado Ribeiro & Johan Ulander & Daniel Lindén & Anna Salvati & Alan Sabirsh, 2023. "Multiomics analysis of naturally efficacious lipid nanoparticle coronas reveals high-density lipoprotein is necessary for their function," Nature Communications, Nature, vol. 14(1), pages 1-16, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-16248-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.