IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-45666-5.html
   My bibliography  Save this article

Liquid crystalline inverted lipid phases encapsulating siRNA enhance lipid nanoparticle mediated transfection

Author

Listed:
  • Roy Pattipeiluhu

    (Leiden University, Einsteinweg 55
    Leiden University Medical Center, Einthovenweg 20
    BioNTech SE, An der Goldgrube 12)

  • Ye Zeng

    (Leiden University, Einsteinweg 55)

  • Marco M.R.M. Hendrix

    (Eindhoven University of Technology, P.O. Box 513)

  • Ilja K. Voets

    (Eindhoven University of Technology, P.O. Box 513)

  • Alexander Kros

    (Leiden University, Einsteinweg 55)

  • Thomas H. Sharp

    (Leiden University Medical Center, Einthovenweg 20
    University of Bristol)

Abstract

Efficient cytosolic delivery of RNA molecules remains a formidable barrier for RNA therapeutic strategies. Lipid nanoparticles (LNPs) serve as state-of-the-art carriers that can deliver RNA molecules intracellularly, as exemplified by the recent implementation of several vaccines against SARS-CoV-2. Using a bottom-up rational design approach, we assemble LNPs that contain programmable lipid phases encapsulating small interfering RNA (siRNA). A combination of cryogenic transmission electron microscopy, cryogenic electron tomography and small-angle X-ray scattering reveals that we can form inverse hexagonal structures, which are present in a liquid crystalline nature within the LNP core. Comparison with lamellar LNPs reveals that the presence of inverse hexagonal phases enhances the intracellular silencing efficiency over lamellar structures. We then demonstrate that lamellar LNPs exhibit an in situ transition from a lamellar to inverse hexagonal phase upon interaction with anionic membranes, whereas LNPs containing pre-programmed liquid crystalline hexagonal phases bypass this transition for a more efficient one-step delivery mechanism, explaining the increased silencing effect. This rational design of LNPs with defined lipid structures aids in the understanding of the nano-bio interface and adds substantial value for LNP design, optimization and use.

Suggested Citation

  • Roy Pattipeiluhu & Ye Zeng & Marco M.R.M. Hendrix & Ilja K. Voets & Alexander Kros & Thomas H. Sharp, 2024. "Liquid crystalline inverted lipid phases encapsulating siRNA enhance lipid nanoparticle mediated transfection," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-45666-5
    DOI: 10.1038/s41467-024-45666-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-45666-5
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-45666-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Davide Demurtas & Paul Guichard & Isabelle Martiel & Raffaele Mezzenga & Cécile Hébert & Laurent Sagalowicz, 2015. "Direct visualization of dispersed lipid bicontinuous cubic phases by cryo-electron tomography," Nature Communications, Nature, vol. 6(1), pages 1-8, December.
    2. Sixuan Li & Yizong Hu & Andrew Li & Jinghan Lin & Kuangwen Hsieh & Zachary Schneiderman & Pengfei Zhang & Yining Zhu & Chenhu Qiu & Efrosini Kokkoli & Tza-Huei Wang & Hai-Quan Mao, 2022. "Payload distribution and capacity of mRNA lipid nanoparticles," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    3. Kathryn A. Whitehead & J. Robert Dorkin & Arturo J. Vegas & Philip H. Chang & Omid Veiseh & Jonathan Matthews & Owen S. Fenton & Yunlong Zhang & Karsten T. Olejnik & Volkan Yesilyurt & Delai Chen & Sc, 2014. "Degradable lipid nanoparticles with predictable in vivo siRNA delivery activity," Nature Communications, Nature, vol. 5(1), pages 1-10, September.
    4. Brendan P. Dyett & Haitao Yu & Jamie Strachan & Calum J. Drummond & Charlotte E. Conn, 2019. "Fusion dynamics of cubosome nanocarriers with model cell membranes," Nature Communications, Nature, vol. 10(1), pages 1-13, December.
    5. Siddharth Patel & N. Ashwanikumar & Ema Robinson & Yan Xia & Cosmin Mihai & Joseph P. Griffith & Shangguo Hou & Adam A. Esposito & Tatiana Ketova & Kevin Welsher & John L. Joyal & Örn Almarsson & Gaur, 2020. "Naturally-occurring cholesterol analogues in lipid nanoparticles induce polymorphic shape and enhance intracellular delivery of mRNA," Nature Communications, Nature, vol. 11(1), pages 1-13, December.
    6. Siddharth Patel & N. Ashwanikumar & Ema Robinson & Yan Xia & Cosmin Mihai & Joseph P. Griffith & Shangguo Hou & Adam A. Esposito & Tatiana Ketova & Kevin Welsher & John L. Joyal & Örn Almarsson & Gaur, 2020. "Author Correction: Naturally-occurring cholesterol analogues in lipid nanoparticles induce polymorphic shape and enhance intracellular delivery of mRNA," Nature Communications, Nature, vol. 11(1), pages 1-1, December.
    7. Paul F. McKay & Kai Hu & Anna K. Blakney & Karnyart Samnuan & Jonathan C. Brown & Rebecca Penn & Jie Zhou & Clément R. Bouton & Paul Rogers & Krunal Polra & Paulo J. C. Lin & Christopher Barbosa & Yin, 2020. "Self-amplifying RNA SARS-CoV-2 lipid nanoparticle vaccine candidate induces high neutralizing antibody titers in mice," Nature Communications, Nature, vol. 11(1), pages 1-7, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Man Wu & Pok Man Hau & Linxian Li & Chi Man Tsang & Yike Yang & Aziz Taghbalout & Grace Tin-Yun Chung & Shin Yee Hui & Wing Chung Tang & Nathaniel Jillette & Jacqueline Jufen Zhu & Horace Hok Yeung Le, 2024. "Synthetic BZLF1-targeted transcriptional activator for efficient lytic induction therapy against EBV-associated epithelial cancers," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    2. Kai Liu & Ralf Nilsson & Elisa Lázaro-Ibáñez & Hanna Duàn & Tasso Miliotis & Marie Strimfors & Michael Lerche & Ana Rita Salgado Ribeiro & Johan Ulander & Daniel Lindén & Anna Salvati & Alan Sabirsh, 2023. "Multiomics analysis of naturally efficacious lipid nanoparticle coronas reveals high-density lipoprotein is necessary for their function," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    3. Ravindra B. Malabadi & Kiran P. Kolkar & Neelambika T. Meti & Raju K. Chalannavar, 2021. "Vaccine Development for Coronavirus (SARS-CoV-2) Disease (Covid-19); Lipid Nanoparticles," International Journal of Research and Scientific Innovation, International Journal of Research and Scientific Innovation (IJRSI), vol. 8(3), pages 189-195, March.
    4. Neeltje van Doremalen & Jonathan E. Schulz & Danielle R. Adney & Taylor A. Saturday & Robert J. Fischer & Claude Kwe Yinda & Nazia Thakur & Joseph Newman & Marta Ulaszewska & Sandra Belij-Rammerstorfe, 2022. "ChAdOx1 nCoV-19 (AZD1222) or nCoV-19-Beta (AZD2816) protect Syrian hamsters against Beta Delta and Omicron variants," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    5. Mai Komori & Takuto Nogimori & Amber L. Morey & Takashi Sekida & Keiko Ishimoto & Matthew R. Hassett & Yuji Masuta & Hirotaka Ode & Tomokazu Tamura & Rigel Suzuki & Jeff Alexander & Yasutoshi Kido & K, 2023. "saRNA vaccine expressing membrane-anchored RBD elicits broad and durable immunity against SARS-CoV-2 variants of concern," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    6. Xuexiang Han & Junchao Xu & Ying Xu & Mohamad-Gabriel Alameh & Lulu Xue & Ningqiang Gong & Rakan El-Mayta & Rohan Palanki & Claude C. Warzecha & Gan Zhao & Andrew E. Vaughan & James M. Wilson & Drew W, 2024. "In situ combinatorial synthesis of degradable branched lipidoids for systemic delivery of mRNA therapeutics and gene editors," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    7. Xuexiang Han & Hanwen Zhang & Kamila Butowska & Kelsey L. Swingle & Mohamad-Gabriel Alameh & Drew Weissman & Michael J. Mitchell, 2021. "An ionizable lipid toolbox for RNA delivery," Nature Communications, Nature, vol. 12(1), pages 1-6, December.
    8. Yu Zhao & Zhongfeng Ye & Donghui Song & Douglas Wich & Shuliang Gao & Jennifer Khirallah & Qiaobing Xu, 2023. "Nanomechanical action opens endo-lysosomal compartments," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    9. Xuexiang Han & Ningqiang Gong & Lulu Xue & Margaret M. Billingsley & Rakan El-Mayta & Sarah J. Shepherd & Mohamad-Gabriel Alameh & Drew Weissman & Michael J. Mitchell, 2023. "Ligand-tethered lipid nanoparticles for targeted RNA delivery to treat liver fibrosis," Nature Communications, Nature, vol. 14(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-45666-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.