IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v377y2025ipbs0306261924018452.html
   My bibliography  Save this article

Analyzing the impact of design factors on solar module thermomechanical durability using interpretable machine learning techniques

Author

Listed:
  • Chen, Xin
  • Karin, Todd
  • Jain, Anubhav

Abstract

Solar modules in utility-scale systems are expected to maintain decades of lifetime to rival conventional energy sources. However, cyclic thermomechanical loading often degrades their long-term performance, highlighting the importance of effective design to mitigate thermal expansion mismatches between module materials. Given the complex composition of solar modules, isolating the impact of individual components on overall durability remains a challenging task. In this work, we analyze a comprehensive data set that comprises bill-of-materials (BOM) and thermal cycling power loss from 251 distinct module designs to identify the predominant design factors and their impacts on the thermomechanical durability of modules. The methodology of our analysis combines machine learning modeling (random forest) and Shapley additive explanation (SHAP) to correlate design factors with power loss and interpret the model’s decision-making. The interpretation reveals that silicon type (monocrystalline or polycrystalline), encapsulant thickness, busbar numbers, and wafer thickness predominantly influence the degradation. With lower power loss of around 0.6% on average in the SHAP analysis, monocrystalline cells present better durability than polycrystalline cells. This finding is further substantiated by statistical testing on our raw data set. The SHAP analysis also demonstrates that while thicker encapsulants lead to reduced power loss, further increasing their thickness over around 0.6 to 0.7 mm does not yield additional benefits, particularly for the front side one. In addition, other important BOM features such as the number of busbars are analyzed. This study provides a blueprint for utilizing explainable machine learning techniques in a complex material system and can potentially guide future research on optimizing the design of solar modules.

Suggested Citation

  • Chen, Xin & Karin, Todd & Jain, Anubhav, 2025. "Analyzing the impact of design factors on solar module thermomechanical durability using interpretable machine learning techniques," Applied Energy, Elsevier, vol. 377(PB).
  • Handle: RePEc:eee:appene:v:377:y:2025:i:pb:s0306261924018452
    DOI: 10.1016/j.apenergy.2024.124462
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924018452
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.124462?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:377:y:2025:i:pb:s0306261924018452. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.