IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-55071-7.html
   My bibliography  Save this article

Electrochemically synthesized H2O2 at industrial-level current densities enabled by in situ fabricated few-layer boron nanosheets

Author

Listed:
  • Yuhan Wu

    (Nanjing Forestry University)

  • Yuying Zhao

    (Chinese Academy of Forestry
    The University of Auckland)

  • Qixin Yuan

    (Nanjing Forestry University)

  • Hao Sun

    (Chinese Academy of Forestry)

  • Ao Wang

    (Chinese Academy of Forestry)

  • Kang Sun

    (Chinese Academy of Forestry)

  • Geoffrey I. N. Waterhouse

    (The University of Auckland)

  • Ziyun Wang

    (The University of Auckland)

  • Jingjie Wu

    (University of Cincinnati)

  • Jianchun Jiang

    (Chinese Academy of Forestry)

  • Mengmeng Fan

    (Nanjing Forestry University
    Chinese Academy of Forestry)

Abstract

Carbon nanomaterials show outstanding promise as electrocatalysts for hydrogen peroxide (H2O2) synthesis via the two-electron oxygen reduction reaction. However, carbon-based electrocatalysts that are capable of generating H2O2 at industrial-level current densities (>300 mA cm−2) with high selectivity and long-term stability remain to be discovered. Herein, few-layer boron nanosheets are in-situ introduced into a porous carbon matrix, creating a metal-free electrocatalyst (Bn-C) with H2O2 production rates of industrial relevance in neutral or alkaline media. Bn-C maintained > 95% Faradaic efficiency during a 140-hour test at 300 mA cm−2 and 0.1 V vs. RHE, and delivered a mass activity of 25.1 mol gcatalyst−1 h−1 in 1.0 M Na2SO4 using a flow cell. Theoretical simulations and experimental studies demonstrate that the superior catalytic performance originates from B atoms with adsorbed O atoms in the boron nanosheets. Bn-C outperforms all metal-based and metal-free carbon catalysts reported to date for H2O2 synthesis at industrial-level current densities.

Suggested Citation

  • Yuhan Wu & Yuying Zhao & Qixin Yuan & Hao Sun & Ao Wang & Kang Sun & Geoffrey I. N. Waterhouse & Ziyun Wang & Jingjie Wu & Jianchun Jiang & Mengmeng Fan, 2024. "Electrochemically synthesized H2O2 at industrial-level current densities enabled by in situ fabricated few-layer boron nanosheets," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-55071-7
    DOI: 10.1038/s41467-024-55071-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-55071-7
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-55071-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jingjie Wu & Sichao Ma & Jing Sun & Jake I. Gold & ChandraSekhar Tiwary & Byoungsu Kim & Lingyang Zhu & Nitin Chopra & Ihab N. Odeh & Robert Vajtai & Aaron Z. Yu & Raymond Luo & Jun Lou & Guqiao Ding , 2016. "A metal-free electrocatalyst for carbon dioxide reduction to multi-carbon hydrocarbons and oxygenates," Nature Communications, Nature, vol. 7(1), pages 1-6, December.
    2. Linfei Li & Jeremy F. Schultz & Sayantan Mahapatra & Zhongyi Lu & Xu Zhang & Nan Jiang, 2022. "Chemically identifying single adatoms with single-bond sensitivity during oxidation reactions of borophene," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    3. Yizhou Dai & Huan Li & Chuanhao Wang & Weiqing Xue & Menglu Zhang & Donghao Zhao & Jing Xue & Jiawei Li & Laihao Luo & Chunxiao Liu & Xu Li & Peixin Cui & Qiu Jiang & Tingting Zheng & Songqi Gu & Yao , 2023. "Manipulating local coordination of copper single atom catalyst enables efficient CO2-to-CH4 conversion," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    4. Yang Xia & Xunhua Zhao & Chuan Xia & Zhen-Yu Wu & Peng Zhu & Jung Yoon (Timothy) Kim & Xiaowan Bai & Guanhui Gao & Yongfeng Hu & Jun Zhong & Yuanyue Liu & Haotian Wang, 2021. "Highly active and selective oxygen reduction to H2O2 on boron-doped carbon for high production rates," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yaowei Huang & Da Xu & Shuai Deng & Meng Lin, 2024. "A hybrid electro-thermochemical device for methane production from the air," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    2. Giulia Tuci & Jonathan Filippi & Andrea Rossin & Lapo Luconi & Cuong Pham-Huu & Dmitry Yakhvarov & Francesco Vizza & Giuliano Giambastiani, 2020. "CO 2 Electrochemical Reduction by Exohedral N-Pyridine Decorated Metal-Free Carbon Nanotubes," Energies, MDPI, vol. 13(11), pages 1-15, May.
    3. Wei Peng & Jiaxin Liu & Xiaoqing Liu & Liqun Wang & Lichang Yin & Haotian Tan & Feng Hou & Ji Liang, 2023. "Facilitating two-electron oxygen reduction with pyrrolic nitrogen sites for electrochemical hydrogen peroxide production," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    4. Cong Liu & Bingbao Mei & Zhaoping Shi & Zheng Jiang & Junjie Ge & Wei Xing & Ping Song & Weilin Xu, 2024. "Operando formation of highly efficient electrocatalysts induced by heteroatom leaching," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    5. Jun Qi & Yadong Du & Qi Yang & Na Jiang & Jiachun Li & Yi Ma & Yangjun Ma & Xin Zhao & Jieshan Qiu, 2023. "Energy-saving and product-oriented hydrogen peroxide electrosynthesis enabled by electrochemistry pairing and product engineering," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    6. Arthur G. Fink & Roxanna S. Delima & Alexandra R. Rousseau & Camden Hunt & Natalie E. LeSage & Aoxue Huang & Monika Stolar & Curtis P. Berlinguette, 2024. "Indirect H2O2 synthesis without H2," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    7. Huiying Deng & Tingting Liu & Wenshan Zhao & Jundong Wang & Yuesheng Zhang & Shuzhen Zhang & Yu Yang & Chao Yang & Wenzhi Teng & Zhuo Chen & Gengfeng Zheng & Fengwang Li & Yaqiong Su & Jingshu Hui & Y, 2024. "Substituent tuning of Cu coordination polymers enables carbon-efficient CO2 electroreduction to multi-carbon products," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    8. Jingsen Bai & Tuo Zhao & Mingjun Xu & Bingbao Mei & Liting Yang & Zhaoping Shi & Siyuan Zhu & Ying Wang & Zheng Jiang & Jin Zhao & Junjie Ge & Meiling Xiao & Changpeng Liu & Wei Xing, 2024. "Monosymmetric Fe-N4 sites enabling durable proton exchange membrane fuel cell cathode by chemical vapor modification," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    9. Han, Juan & Deng, Ximing & Chen, Keyu & Imhanria, Sarah & Sun, Yan & Wang, Wei, 2021. "Electrochemical conversion of CO2 into tunable syngas on a B, P, N tri-doped carbon," Renewable Energy, Elsevier, vol. 177(C), pages 636-642.
    10. Pribyl-Kranewitter, B. & Beard, A. & Gîjiu, C.L. & Dinculescu, D. & Schmidt, T.J., 2022. "Influence of low-temperature electrolyser design on economic and environmental potential of CO and HCOOH production: A techno-economic assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    11. Yinshan Zhang & Yingcai Wang & Zhimin Dong & Youqun Wang & Yuhui Liu & Xiaohong Cao & Zhibin Zhang & Chao Xu & Ning Wang & Yunhai Liu, 2024. "Boosting uranium extraction from Seawater by micro-redox reactors anchored in a seaweed-like adsorbent," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    12. Chao-Hai Gu & Song Wang & Ai-Yong Zhang & Chang Liu & Jun Jiang & Han-Qing Yu, 2024. "Tuning electronic structure of metal-free dual-site catalyst enables exclusive singlet oxygen production and in-situ utilization," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    13. Qianjun Zhi & Rong Jiang & Xiya Yang & Yucheng Jin & Dongdong Qi & Kang Wang & Yunpeng Liu & Jianzhuang Jiang, 2024. "Dithiine-linked metalphthalocyanine framework with undulated layers for highly efficient and stable H2O2 electroproduction," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    14. Dong, Zhiguo & Guan, Wei & Yang, Haiping & Chen, Lei & Hua, Dongliang & Li, Tianjin & Chen, Hanping, 2024. "Shape-controllable synthesis of lignin-derived boron-doped nanoporous carbons for dye adsorption and electrochemical H2O2 production," Renewable Energy, Elsevier, vol. 236(C).
    15. Xiao Zhou & Yuan Min & Changming Zhao & Cai Chen & Ming-Kun Ke & Shi-Lin Xu & Jie-Jie Chen & Yuen Wu & Han-Qing Yu, 2024. "Constructing sulfur and oxygen super-coordinated main-group electrocatalysts for selective and cumulative H2O2 production," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    16. Baiyu Yang & Ling Chen & Songlin Xue & Hao Sun & Kun Feng & Yufeng Chen & Xiang Zhang & Long Xiao & Yongze Qin & Jun Zhong & Zhao Deng & Yan Jiao & Yang Peng, 2022. "Electrocatalytic CO2 reduction to alcohols by modulating the molecular geometry and Cu coordination in bicentric copper complexes," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    17. Peike Cao & Xie Quan & Xiaowa Nie & Kun Zhao & Yanming Liu & Shuo Chen & Hongtao Yu & Jingguang G. Chen, 2023. "Metal single-site catalyst design for electrocatalytic production of hydrogen peroxide at industrial-relevant currents," Nature Communications, Nature, vol. 14(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-55071-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.