IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v12y2021i1d10.1038_s41467-021-26159-1.html
   My bibliography  Save this article

Tcf1 and Lef1 provide constant supervision to mature CD8+ T cell identity and function by organizing genomic architecture

Author

Listed:
  • Qiang Shan

    (Hackensack University Medical Center)

  • Xiang Li

    (The George Washington University)

  • Xia Chen

    (Capital Medical University)

  • Zhouhao Zeng

    (The George Washington University)

  • Shaoqi Zhu

    (The George Washington University)

  • Kexin Gai

    (Hackensack University Medical Center)

  • Weiqun Peng

    (The George Washington University)

  • Hai-Hui Xue

    (Hackensack University Medical Center
    New Jersey Veterans Affairs Health Care System)

Abstract

T cell identity is established during thymic development, but how it is maintained in the periphery remains unknown. Here we show that ablating Tcf1 and Lef1 transcription factors in mature CD8+ T cells aberrantly induces genes from non-T cell lineages. Using high-throughput chromosome-conformation-capture sequencing, we demonstrate that Tcf1/Lef1 are important for maintaining three-dimensional genome organization at multiple scales in CD8+ T cells. Comprehensive network analyses coupled with genome-wide profiling of chromatin accessibility and Tcf1 occupancy show the direct impact of Tcf1/Lef1 on the T cell genome is to promote formation of extensively interconnected hubs through enforcing chromatin interaction and accessibility. The integrative mechanisms utilized by Tcf1/Lef1 underlie activation of T cell identity genes and repression of non-T lineage genes, conferring fine control of various T cell functionalities. These findings suggest that Tcf1/Lef1 control global genome organization and help form intricate chromatin-interacting hubs to facilitate promoter-enhancer/silencer contact, hence providing constant supervision of CD8+ T cell identity and function.

Suggested Citation

  • Qiang Shan & Xiang Li & Xia Chen & Zhouhao Zeng & Shaoqi Zhu & Kexin Gai & Weiqun Peng & Hai-Hui Xue, 2021. "Tcf1 and Lef1 provide constant supervision to mature CD8+ T cell identity and function by organizing genomic architecture," Nature Communications, Nature, vol. 12(1), pages 1-20, December.
  • Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-26159-1
    DOI: 10.1038/s41467-021-26159-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-021-26159-1
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-021-26159-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Fengyin Li & Zhouhao Zeng & Shaojun Xing & Jodi A. Gullicksrud & Qiang Shan & Jinyong Choi & Vladimir P. Badovinac & Shane Crotty & Weiqun Peng & Hai-Hui Xue, 2018. "Ezh2 programs TFH differentiation by integrating phosphorylation-dependent activation of Bcl6 and polycomb-dependent repression of p19Arf," Nature Communications, Nature, vol. 9(1), pages 1-18, December.
    2. César Cobaleda & Wolfram Jochum & Meinrad Busslinger, 2007. "Conversion of mature B cells into T cells by dedifferentiation to uncommitted progenitors," Nature, Nature, vol. 449(7161), pages 473-477, September.
    3. Wenfei Jin & Qingsong Tang & Mimi Wan & Kairong Cui & Yi Zhang & Gang Ren & Bing Ni & Jeffrey Sklar & Teresa M. Przytycka & Richard Childs & David Levens & Keji Zhao, 2015. "Genome-wide detection of DNase I hypersensitive sites in single cells and FFPE tissue samples," Nature, Nature, vol. 528(7580), pages 142-146, December.
    4. Stephen L. Nutt & Barry Heavey & Antonius G. Rolink & Meinrad Busslinger, 1999. "Commitment to the B-lymphoid lineage depends on the transcription factor Pax5," Nature, Nature, vol. 402(6763), pages 14-20, December.
    5. Elisa Laurenti & Berthold Göttgens, 2018. "From haematopoietic stem cells to complex differentiation landscapes," Nature, Nature, vol. 553(7689), pages 418-426, January.
    6. Stephen L. Nutt & Barry Heavey & Antonius G. Rolink & Meinrad Busslinger, 1999. "Commitment to the B-lymphoid lineage depends on the transcription factor Pax5," Nature, Nature, vol. 401(6753), pages 556-562, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hussain, Javed & Bano, Zarqa & Ahmed, Waleed & Shahid, Saba, 2022. "Analysis of stochastic dynamics of tumor with drug interventions," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
    2. Roger Mulet-Lazaro & Stanley Herk & Margit Nuetzel & Aniko Sijs-Szabo & Noelia Díaz & Katherine Kelly & Claudia Erpelinck-Verschueren & Lucia Schwarzfischer-Pfeilschifter & Hanna Stanewsky & Ute Acker, 2024. "Epigenetic alterations affecting hematopoietic regulatory networks as drivers of mixed myeloid/lymphoid leukemia," Nature Communications, Nature, vol. 15(1), pages 1-22, December.
    3. S. Fiorenza & Y. Zheng & J. Purushe & T. J. Bock & J. Sarthy & D. H. Janssens & A. S. Sheih & E. L. Kimble & D. Kirchmeier & T. D. Phi & J. Gauthier & A. V. Hirayama & S. R. Riddell & Q. Wu & R. Gotta, 2024. "Histone marks identify novel transcription factors that parse CAR-T subset-of-origin, clinical potential and expansion," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    4. Emily N. Neubert & Julia M. DeRogatis & Sloan A. Lewis & Karla M. Viramontes & Pedro Ortega & Monique L. Henriquez & Rémi Buisson & Ilhem Messaoudi & Roberto Tinoco, 2023. "HMGB2 regulates the differentiation and stemness of exhausted CD8+ T cells during chronic viral infection and cancer," Nature Communications, Nature, vol. 14(1), pages 1-17, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen Chen & Bongsoo Park & Emeline Ragonnaud & Monica Bodogai & Xin Wang & Le Zong & Jung-Min Lee & Isabel Beerman & Arya Biragyn, 2022. "Cancer co-opts differentiation of B-cell precursors into macrophage-like cells," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    2. Robin D. Lee & Sarah A. Munro & Todd P. Knutson & Rebecca S. LaRue & Lynn M. Heltemes-Harris & Michael A. Farrar, 2021. "Single-cell analysis identifies dynamic gene expression networks that govern B cell development and transformation," Nature Communications, Nature, vol. 12(1), pages 1-16, December.
    3. Steven Henikoff & Jorja G. Henikoff & Kami Ahmad & Ronald M. Paranal & Derek H. Janssens & Zachary R. Russell & Frank Szulzewsky & Sita Kugel & Eric C. Holland, 2023. "Epigenomic analysis of formalin-fixed paraffin-embedded samples by CUT&Tag," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    4. Kensuke Miyake & Junya Ito & Jun Nakabayashi & Shigeyuki Shichino & Kenji Ishiwata & Hajime Karasuyama, 2023. "Single cell transcriptomics clarifies the basophil differentiation trajectory and identifies pre-basophils upstream of mature basophils," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    5. Mina N. F. Morcos & Congxin Li & Clara M. Munz & Alessandro Greco & Nicole Dressel & Susanne Reinhardt & Katrin Sameith & Andreas Dahl & Nils B. Becker & Axel Roers & Thomas Höfer & Alexander Gerbaule, 2022. "Fate mapping of hematopoietic stem cells reveals two pathways of native thrombopoiesis," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    6. Fei Sun & Nourhan Nashat Ali & Daniela Londoño-Vásquez & Constantine A. Simintiras & Huanyu Qiao & M. Sofia Ortega & Yuksel Agca & Masashi Takahashi & Rocío M. Rivera & Andrew M. Kelleher & Peter Suto, 2024. "Increased DNA damage in full-grown oocytes is correlated with diminished autophagy activation," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
    7. Sang-A Park & Yun-Ji Lim & Wai Lim Ku & Dunfang Zhang & Kairong Cui & Liu-Ya Tang & Cheryl Chia & Peter Zanvit & Zuojia Chen & Wenwen Jin & Dandan Wang & Junji Xu & Ousheng Liu & Fu Wang & Alexander C, 2022. "Opposing functions of circadian protein DBP and atypical E2F family E2F8 in anti-tumor Th9 cell differentiation," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    8. Reuben Franklin & Yiming Guo & Shiyang He & Meijuan Chen & Fei Ji & Xinyue Zhou & David Frankhouser & Brian T. Do & Carmen Chiem & Mihyun Jang & M. Andres Blanco & Matthew G. Vander Heiden & Russell C, 2022. "Regulation of chromatin accessibility by the histone chaperone CAF-1 sustains lineage fidelity," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    9. Tianyu Zhu & Huige Tong & Zhaozhen Du & Stephan Beck & Andrew E. Teschendorff, 2024. "An improved epigenetic counter to track mitotic age in normal and precancerous tissues," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    10. Gang Ren & Wai Lim Ku & Guangzhe Ge & Jackson A. Hoffman & Jee Youn Kang & Qingsong Tang & Kairong Cui & Yong He & Yukun Guan & Bin Gao & Chengyu Liu & Trevor K. Archer & Keji Zhao, 2024. "Acute depletion of BRG1 reveals its primary function as an activator of transcription," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    11. Youtao Lu & Jaehee Lee & Jifen Li & Srinivasa Rao Allu & Jinhui Wang & HyunBum Kim & Kevin L. Bullaughey & Stephen A. Fisher & C. Erik Nordgren & Jean G. Rosario & Stewart A. Anderson & Alexandra V. U, 2023. "CHEX-seq detects single-cell genomic single-stranded DNA with catalytical potential," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    12. Alan Yue Yang Teo & Jordan W. Squair & Gregoire Courtine & Michael A. Skinnider, 2024. "Best practices for differential accessibility analysis in single-cell epigenomics," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    13. Marta Isidro-Hernández & Ana Casado-García & Ninad Oak & Silvia Alemán-Arteaga & Belén Ruiz-Corzo & Jorge Martínez-Cano & Andrea Mayado & Elena G. Sánchez & Oscar Blanco & Ma Luisa Gaspar & Alberto Or, 2023. "Immune stress suppresses innate immune signaling in preleukemic precursor B-cells to provoke leukemia in predisposed mice," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    14. Yuxuan Liu & Zhimin Gu & Hui Cao & Pranita Kaphle & Junhua Lyu & Yuannyu Zhang & Wenhuo Hu & Stephen S. Chung & Kathryn E. Dickerson & Jian Xu, 2021. "Convergence of oncogenic cooperation at single-cell and single-gene levels drives leukemic transformation," Nature Communications, Nature, vol. 12(1), pages 1-17, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-26159-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.