IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-54849-z.html
   My bibliography  Save this article

Training all-mechanical neural networks for task learning through in situ backpropagation

Author

Listed:
  • Shuaifeng Li

    (University of Michigan)

  • Xiaoming Mao

    (University of Michigan)

Abstract

Recent advances unveiled physical neural networks as promising machine learning platforms, offering faster and more energy-efficient information processing. Compared with extensively-studied optical neural networks, the development of mechanical neural networks remains nascent and faces significant challenges, including heavy computational demands and learning with approximate gradients. Here, we introduce the mechanical analogue of in situ backpropagation to enable highly efficient training of mechanical neural networks. We theoretically prove that the exact gradient can be obtained locally, enabling learning through the immediate vicinity, and we experimentally demonstrate this backpropagation to obtain gradient with high precision. With the gradient information, we showcase the successful training of networks in simulations for behavior learning and machine learning tasks, achieving high accuracy in experiments of regression and classification. Furthermore, we present the retrainability of networks involving task-switching and damage, demonstrating the resilience. Our findings, which integrate the theory for training mechanical neural networks and experimental and numerical validations, pave the way for mechanical machine learning hardware and autonomous self-learning material systems.

Suggested Citation

  • Shuaifeng Li & Xiaoming Mao, 2024. "Training all-mechanical neural networks for task learning through in situ backpropagation," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-54849-z
    DOI: 10.1038/s41467-024-54849-z
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-54849-z
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-54849-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Logan G. Wright & Tatsuhiro Onodera & Martin M. Stein & Tianyu Wang & Darren T. Schachter & Zoey Hu & Peter L. McMahon, 2022. "Deep physical neural networks trained with backpropagation," Nature, Nature, vol. 601(7894), pages 549-555, January.
    2. Jingkai Weng & Yujiang Ding & Chengbo Hu & Xue-Feng Zhu & Bin Liang & Jing Yang & Jianchun Cheng, 2020. "Meta-neural-network for real-time and passive deep-learning-based object recognition," Nature Communications, Nature, vol. 11(1), pages 1-8, December.
    3. Tianyu Wang & Shi-Yuan Ma & Logan G. Wright & Tatsuhiro Onodera & Brian C. Richard & Peter L. McMahon, 2022. "An optical neural network using less than 1 photon per multiplication," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    4. Kalampokis, Alkiviadis & Kotsavasiloglou, Christos & Argyrakis, Panos & Baloyannis, Stavros, 2003. "Robustness in biological neural networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 317(3), pages 581-590.
    5. Jérémie Laydevant & Danijela Marković & Julie Grollier, 2024. "Training an Ising machine with equilibrium propagation," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    6. Michiel Hermans & Michaël Burm & Thomas Van Vaerenbergh & Joni Dambre & Peter Bienstman, 2015. "Trainable hardware for dynamical computing using error backpropagation through physical media," Nature Communications, Nature, vol. 6(1), pages 1-8, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Seou Choi & Yannick Salamin & Charles Roques-Carmes & Rumen Dangovski & Di Luo & Zhuo Chen & Michael Horodynski & Jamison Sloan & Shiekh Zia Uddin & Marin Soljačić, 2024. "Photonic probabilistic machine learning using quantum vacuum noise," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    2. Mitsumasa Nakajima & Katsuma Inoue & Kenji Tanaka & Yasuo Kuniyoshi & Toshikazu Hashimoto & Kohei Nakajima, 2022. "Physical deep learning with biologically inspired training method: gradient-free approach for physical hardware," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    3. Fan Cai & Yuesong Jiang & Wanqing Song & Kai-Hung Lu & Tongbo Zhu, 2024. "Short-Term Wind Turbine Blade Icing Wind Power Prediction Based on PCA-fLsm," Energies, MDPI, vol. 17(6), pages 1-15, March.
    4. Kilian D. Stenning & Jack C. Gartside & Luca Manneschi & Christopher T. S. Cheung & Tony Chen & Alex Vanstone & Jake Love & Holly Holder & Francesco Caravelli & Hidekazu Kurebayashi & Karin Everschor-, 2024. "Neuromorphic overparameterisation and few-shot learning in multilayer physical neural networks," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    5. Elena Goi & Steffen Schoenhardt & Min Gu, 2022. "Direct retrieval of Zernike-based pupil functions using integrated diffractive deep neural networks," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    6. Tianyu Wang & Jialin Meng & Xufeng Zhou & Yue Liu & Zhenyu He & Qi Han & Qingxuan Li & Jiajie Yu & Zhenhai Li & Yongkai Liu & Hao Zhu & Qingqing Sun & David Wei Zhang & Peining Chen & Huisheng Peng & , 2022. "Reconfigurable neuromorphic memristor network for ultralow-power smart textile electronics," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    7. Md Tauhidul Islam & Zixia Zhou & Hongyi Ren & Masoud Badiei Khuzani & Daniel Kapp & James Zou & Lu Tian & Joseph C. Liao & Lei Xing, 2023. "Revealing hidden patterns in deep neural network feature space continuum via manifold learning," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    8. Malte J. Rasch & Charles Mackin & Manuel Gallo & An Chen & Andrea Fasoli & Frédéric Odermatt & Ning Li & S. R. Nandakumar & Pritish Narayanan & Hsinyu Tsai & Geoffrey W. Burr & Abu Sebastian & Vijay N, 2023. "Hardware-aware training for large-scale and diverse deep learning inference workloads using in-memory computing-based accelerators," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    9. Chengkuan Gao & Prabhav Gaur & Dhaifallah Almutairi & Shimon Rubin & Yeshaiahu Fainman, 2023. "Optofluidic memory and self-induced nonlinear optical phase change for reservoir computing in silicon photonics," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    10. Yang Shi & Junyu Ren & Guanyu Chen & Wei Liu & Chuqi Jin & Xiangyu Guo & Yu Yu & Xinliang Zhang, 2022. "Nonlinear germanium-silicon photodiode for activation and monitoring in photonic neuromorphic networks," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    11. Abbas, Khizar & Han, Mengyao & Xu, Deyi & Butt, Khalid Manzoor & Baz, Khan & Cheng, Jinhua & Zhu, Yongguang & Hussain, Sanwal, 2024. "Exploring synergistic and individual causal effects of rare earth elements and renewable energy on multidimensional economic complexity for sustainable economic development," Applied Energy, Elsevier, vol. 364(C).
    12. Gao Wang & Giulia Marcucci & Benjamin Peters & Maria Chiara Braidotti & Lars Muckli & Daniele Faccio, 2024. "Human-centred physical neuromorphics with visual brain-computer interfaces," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    13. Jamshaid Ul Rahman & Sana Danish & Dianchen Lu, 2023. "Deep Neural Network-Based Simulation of Sel’kov Model in Glycolysis: A Comprehensive Analysis," Mathematics, MDPI, vol. 11(14), pages 1-9, July.
    14. Ruomin Zhu & Sam Lilak & Alon Loeffler & Joseph Lizier & Adam Stieg & James Gimzewski & Zdenka Kuncic, 2023. "Online dynamical learning and sequence memory with neuromorphic nanowire networks," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    15. Federico Ricci & Massimiliano Avana & Francesco Mariani, 2024. "Enhancing Lambda Measurement in Hydrogen-Fueled SI Engines through Virtual Sensor Implementation," Energies, MDPI, vol. 17(16), pages 1-17, August.
    16. Fangjun Hu & Saeed A. Khan & Nicholas T. Bronn & Gerasimos Angelatos & Graham E. Rowlands & Guilhem J. Ribeill & Hakan E. Türeci, 2024. "Overcoming the coherence time barrier in quantum machine learning on temporal data," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    17. Jérémie Laydevant & Danijela Marković & Julie Grollier, 2024. "Training an Ising machine with equilibrium propagation," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    18. Carla Rodríguez & Sören Arlt & Leonhard Möckl & Mario Krenn, 2024. "Automated discovery of experimental designs in super-resolution microscopy with XLuminA," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    19. Chao Qian & Zhedong Wang & Haoliang Qian & Tong Cai & Bin Zheng & Xiao Lin & Yichen Shen & Ido Kaminer & Erping Li & Hongsheng Chen, 2022. "Dynamic recognition and mirage using neuro-metamaterials," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    20. Hongmei Cui & Zhongyang Li & Bingchuan Sun & Teng Fan & Yonghao Li & Lida Luo & Yong Zhang & Jian Wang, 2022. "A New Ice Quality Prediction Method of Wind Turbine Impeller Based on the Deep Neural Network," Energies, MDPI, vol. 15(22), pages 1-18, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-54849-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.