IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-57459-5.html
   My bibliography  Save this article

Asymmetrical estimator for training encapsulated deep photonic neural networks

Author

Listed:
  • Yizhi Wang

    (University of Cambridge)

  • Minjia Chen

    (University of Cambridge)

  • Chunhui Yao

    (University of Cambridge
    GlitterinTech Limited)

  • Jie Ma

    (GlitterinTech Limited)

  • Ting Yan

    (GlitterinTech Limited)

  • Richard Penty

    (University of Cambridge)

  • Qixiang Cheng

    (University of Cambridge
    GlitterinTech Limited)

Abstract

Photonic neural networks (PNNs) are fast in-propagation and high bandwidth paradigms that aim to popularize reproducible NN acceleration with higher efficiency and lower cost. However, the training of PNN is known to be challenging, where the device-to-device and system-to-system variations create imperfect knowledge of the PNN. Despite backpropagation (BP)-based training algorithms being the industry standard for their robustness, generality, and fast gradient convergence for digital training, existing PNN-BP methods rely heavily on accurate intermediate state extraction or extensive computational resources for deep PNNs (DPNNs). The truncated photonic signal propagation and the computation overhead bottleneck DPNN’s operation efficiency and increase system construction cost. Here, we introduce the asymmetrical training (AsyT) method, tailored for encapsulated DPNNs, where the signal is preserved in the analogue photonic domain for the entire structure. AsyT offers a lightweight solution for DPNNs with minimum readouts, fast and energy-efficient operation, and minimum system footprint. AsyT’s ease of operation, error tolerance, and generality aim to promote PNN acceleration in a widened operational scenario despite the fabrication variations and imperfect controls. We demonstrated AsyT for encapsulated DPNN with integrated photonic chips, repeatably enhancing the performance from in-silico BP for different network structures and datasets.

Suggested Citation

  • Yizhi Wang & Minjia Chen & Chunhui Yao & Jie Ma & Ting Yan & Richard Penty & Qixiang Cheng, 2025. "Asymmetrical estimator for training encapsulated deep photonic neural networks," Nature Communications, Nature, vol. 16(1), pages 1-14, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-57459-5
    DOI: 10.1038/s41467-025-57459-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-57459-5
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-57459-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. H. Zhang & M. Gu & X. D. Jiang & J. Thompson & H. Cai & S. Paesani & R. Santagati & A. Laing & Y. Zhang & M. H. Yung & Y. Z. Shi & F. K. Muhammad & G. Q. Lo & X. S. Luo & B. Dong & D. L. Kwong & L. C., 2021. "An optical neural chip for implementing complex-valued neural network," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    2. J. Feldmann & N. Youngblood & M. Karpov & H. Gehring & X. Li & M. Stappers & M. Gallo & X. Fu & A. Lukashchuk & A. S. Raja & J. Liu & C. D. Wright & A. Sebastian & T. J. Kippenberg & W. H. P. Pernice , 2021. "Parallel convolutional processing using an integrated photonic tensor core," Nature, Nature, vol. 589(7840), pages 52-58, January.
    3. Mitsumasa Nakajima & Katsuma Inoue & Kenji Tanaka & Yasuo Kuniyoshi & Toshikazu Hashimoto & Kohei Nakajima, 2022. "Physical deep learning with biologically inspired training method: gradient-free approach for physical hardware," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    4. Timothy P. Lillicrap & Daniel Cownden & Douglas B. Tweed & Colin J. Akerman, 2016. "Random synaptic feedback weights support error backpropagation for deep learning," Nature Communications, Nature, vol. 7(1), pages 1-10, December.
    5. Logan G. Wright & Tatsuhiro Onodera & Martin M. Stein & Tianyu Wang & Darren T. Schachter & Zoey Hu & Peter L. McMahon, 2022. "Deep physical neural networks trained with backpropagation," Nature, Nature, vol. 601(7894), pages 549-555, January.
    6. Charles R. Harris & K. Jarrod Millman & Stéfan J. Walt & Ralf Gommers & Pauli Virtanen & David Cournapeau & Eric Wieser & Julian Taylor & Sebastian Berg & Nathaniel J. Smith & Robert Kern & Matti Picu, 2020. "Array programming with NumPy," Nature, Nature, vol. 585(7825), pages 357-362, September.
    7. J. Feldmann & N. Youngblood & M. Karpov & H. Gehring & X. Li & M. Stappers & M. Gallo & X. Fu & A. Lukashchuk & A. S. Raja & J. Liu & C. D. Wright & A. Sebastian & T. J. Kippenberg & W. H. P. Pernice , 2021. "Publisher Correction: Parallel convolutional processing using an integrated photonic tensor core," Nature, Nature, vol. 591(7849), pages 13-13, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mitsumasa Nakajima & Katsuma Inoue & Kenji Tanaka & Yasuo Kuniyoshi & Toshikazu Hashimoto & Kohei Nakajima, 2022. "Physical deep learning with biologically inspired training method: gradient-free approach for physical hardware," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    2. H. H. Zhu & J. Zou & H. Zhang & Y. Z. Shi & S. B. Luo & N. Wang & H. Cai & L. X. Wan & B. Wang & X. D. Jiang & J. Thompson & X. S. Luo & X. H. Zhou & L. M. Xiao & W. Huang & L. Patrick & M. Gu & L. C., 2022. "Space-efficient optical computing with an integrated chip diffractive neural network," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    3. Bowen Bai & Qipeng Yang & Haowen Shu & Lin Chang & Fenghe Yang & Bitao Shen & Zihan Tao & Jing Wang & Shaofu Xu & Weiqiang Xie & Weiwen Zou & Weiwei Hu & John E. Bowers & Xingjun Wang, 2023. "Microcomb-based integrated photonic processing unit," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    4. Xiangyan Meng & Guojie Zhang & Nuannuan Shi & Guangyi Li & José Azaña & José Capmany & Jianping Yao & Yichen Shen & Wei Li & Ninghua Zhu & Ming Li, 2023. "Compact optical convolution processing unit based on multimode interference," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    5. Han Zhao & Bingzhao Li & Huan Li & Mo Li, 2022. "Enabling scalable optical computing in synthetic frequency dimension using integrated cavity acousto-optics," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    6. Yunping Bai & Yifu Xu & Shifan Chen & Xiaotian Zhu & Shuai Wang & Sirui Huang & Yuhang Song & Yixuan Zheng & Zhihui Liu & Sim Tan & Roberto Morandotti & Sai T. Chu & Brent E. Little & David J. Moss & , 2025. "TOPS-speed complex-valued convolutional accelerator for feature extraction and inference," Nature Communications, Nature, vol. 16(1), pages 1-13, December.
    7. Miltiadis Moralis-Pegios & George Giamougiannis & Apostolos Tsakyridis & David Lazovsky & Nikos Pleros, 2024. "Perfect linear optics using silicon photonics," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    8. Guangwei Cong & Noritsugu Yamamoto & Takashi Inoue & Yuriko Maegami & Morifumi Ohno & Shota Kita & Shu Namiki & Koji Yamada, 2022. "On-chip bacterial foraging training in silicon photonic circuits for projection-enabled nonlinear classification," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    9. Minjia Chen & Yizhi Wang & Chunhui Yao & Adrian Wonfor & Shuai Yang & Richard Penty & Qixiang Cheng, 2024. "I/O-efficient iterative matrix inversion with photonic integrated circuits," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    10. Steven Becker & Dirk Englund & Birgit Stiller, 2024. "An optoacoustic field-programmable perceptron for recurrent neural networks," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    11. Ziyu Zhan & Hao Wang & Qiang Liu & Xing Fu, 2024. "Photonic diffractive generators through sampling noises from scattering media," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    12. G. Mourgias-Alexandris & M. Moralis-Pegios & A. Tsakyridis & S. Simos & G. Dabos & A. Totovic & N. Passalis & M. Kirtas & T. Rutirawut & F. Y. Gardes & A. Tefas & N. Pleros, 2022. "Noise-resilient and high-speed deep learning with coherent silicon photonics," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    13. Shi-Yuan Ma & Tianyu Wang & Jérémie Laydevant & Logan G. Wright & Peter L. McMahon, 2025. "Quantum-limited stochastic optical neural networks operating at a few quanta per activation," Nature Communications, Nature, vol. 16(1), pages 1-12, December.
    14. Shihan Hong & Jiachen Wu & Yiwei Xie & Xiyuan Ke & Huan Li & Linyan Lyv & Yingying Peng & Qingrui Yao & Yaocheng Shi & Ke Wang & Leimeng Zhuang & Pan Wang & Daoxin Dai, 2025. "Versatile parallel signal processing with a scalable silicon photonic chip," Nature Communications, Nature, vol. 16(1), pages 1-13, December.
    15. Junwei Cheng & Chaoran Huang & Jialong Zhang & Bo Wu & Wenkai Zhang & Xinyu Liu & Jiahui Zhang & Yiyi Tang & Hailong Zhou & Qiming Zhang & Min Gu & Jianji Dong & Xinliang Zhang, 2024. "Multimodal deep learning using on-chip diffractive optics with in situ training capability," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    16. Alexander Song & Sai Nikhilesh Murty Kottapalli & Rahul Goyal & Bernhard Schölkopf & Peer Fischer, 2024. "Low-power scalable multilayer optoelectronic neural networks enabled with incoherent light," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    17. Zhongjin Lin & Bhavin J. Shastri & Shangxuan Yu & Jingxiang Song & Yuntao Zhu & Arman Safarnejadian & Wangning Cai & Yanmei Lin & Wei Ke & Mustafa Hammood & Tianye Wang & Mengyue Xu & Zibo Zheng & Moh, 2024. "120 GOPS Photonic tensor core in thin-film lithium niobate for inference and in situ training," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    18. Wen Zhou & Bowei Dong & Nikolaos Farmakidis & Xuan Li & Nathan Youngblood & Kairan Huang & Yuhan He & C. David Wright & Wolfram H. P. Pernice & Harish Bhaskaran, 2023. "In-memory photonic dot-product engine with electrically programmable weight banks," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    19. Seou Choi & Yannick Salamin & Charles Roques-Carmes & Rumen Dangovski & Di Luo & Zhuo Chen & Michael Horodynski & Jamison Sloan & Shiekh Zia Uddin & Marin Soljačić, 2024. "Photonic probabilistic machine learning using quantum vacuum noise," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    20. Jiawei Lv & Jeong Hyun Han & Geonho Han & Seongmin An & Seung Ju Kim & Ryeong Myeong Kim & Jung‐El Ryu & Rena Oh & Hyuckjin Choi & In Han Ha & Yoon Ho Lee & Minje Kim & Gyeong-Su Park & Ho Won Jang & , 2024. "Spatiotemporally modulated full-polarized light emission for multiplexed optical encryption," Nature Communications, Nature, vol. 15(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-57459-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.