IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2023i14p3216-d1199774.html
   My bibliography  Save this article

Deep Neural Network-Based Simulation of Sel’kov Model in Glycolysis: A Comprehensive Analysis

Author

Listed:
  • Jamshaid Ul Rahman

    (School of Mathematical Sciences, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
    Abdus Salam School of Mathematical Sciences, GC University, Lahore 54600, Pakistan)

  • Sana Danish

    (Abdus Salam School of Mathematical Sciences, GC University, Lahore 54600, Pakistan)

  • Dianchen Lu

    (School of Mathematical Sciences, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China)

Abstract

The Sel’kov model for glycolysis is a highly effective tool in capturing the complex feedback mechanisms that occur within a biochemical system. However, accurately predicting the behavior of this system is challenging due to its nonlinearity, stiffness, and parameter sensitivity. In this paper, we present a novel deep neural network-based method to simulate the Sel’kov glycolysis model of ADP and F6P, which overcomes the limitations of conventional numerical methods. Our comprehensive results demonstrate that the proposed approach outperforms traditional methods and offers greater reliability for nonlinear dynamics. By adopting this flexible and robust technique, researchers can gain deeper insights into the complex interactions that drive biochemical systems.

Suggested Citation

  • Jamshaid Ul Rahman & Sana Danish & Dianchen Lu, 2023. "Deep Neural Network-Based Simulation of Sel’kov Model in Glycolysis: A Comprehensive Analysis," Mathematics, MDPI, vol. 11(14), pages 1-9, July.
  • Handle: RePEc:gam:jmathe:v:11:y:2023:i:14:p:3216-:d:1199774
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/14/3216/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/14/3216/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Logan G. Wright & Tatsuhiro Onodera & Martin M. Stein & Tianyu Wang & Darren T. Schachter & Zoey Hu & Peter L. McMahon, 2022. "Deep physical neural networks trained with backpropagation," Nature, Nature, vol. 601(7894), pages 549-555, January.
    2. Stefan Kremsner & Alexander Steinicke & Michaela Szölgyenyi, 2020. "A Deep Neural Network Algorithm for Semilinear Elliptic PDEs with Applications in Insurance Mathematics," Risks, MDPI, vol. 8(4), pages 1-18, December.
    3. Stefan Kremsner & Alexander Steinicke & Michaela Szolgyenyi, 2020. "A deep neural network algorithm for semilinear elliptic PDEs with applications in insurance mathematics," Papers 2010.15757, arXiv.org, revised Dec 2020.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jamshaid Ul Rahman & Sana Danish & Dianchen Lu, 2024. "Oscillator Simulation with Deep Neural Networks," Mathematics, MDPI, vol. 12(7), pages 1-15, March.
    2. Chih-Yu Liu & Cheng-Yu Ku & Wei-Da Chen, 2024. "A Spacetime RBF-Based DNNs for Solving Unsaturated Flow Problems," Mathematics, MDPI, vol. 12(18), pages 1-25, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Julia Eisenberg & Stefan Kremsner & Alexander Steinicke, 2021. "Two Approaches for a Dividend Maximization Problem under an Ornstein-Uhlenbeck Interest Rate," Papers 2108.00234, arXiv.org.
    2. Maximilien Germain & Huyên Pham & Xavier Warin, 2021. "Neural networks-based algorithms for stochastic control and PDEs in finance ," Post-Print hal-03115503, HAL.
    3. Lorenc Kapllani & Long Teng, 2024. "A backward differential deep learning-based algorithm for solving high-dimensional nonlinear backward stochastic differential equations," Papers 2404.08456, arXiv.org.
    4. Julia Eisenberg & Stefan Kremsner & Alexander Steinicke, 2021. "Two Approaches for a Dividend Maximization Problem under an Ornstein-Uhlenbeck Interest Rate," Mathematics, MDPI, vol. 9(18), pages 1-20, September.
    5. E. Lorenzo & G. Piscopo & M. Sibillo, 2024. "Addressing the economic and demographic complexity via a neural network approach: risk measures for reverse mortgages," Computational Management Science, Springer, vol. 21(1), pages 1-22, June.
    6. Maximilien Germain & Huyên Pham & Xavier Warin, 2021. "Neural networks-based algorithms for stochastic control and PDEs in finance ," Working Papers hal-03115503, HAL.
    7. Maximilien Germain & Huy^en Pham & Xavier Warin, 2021. "Neural networks-based algorithms for stochastic control and PDEs in finance," Papers 2101.08068, arXiv.org, revised Apr 2021.
    8. Rudiger Frey & Verena Kock, 2021. "Deep Neural Network Algorithms for Parabolic PIDEs and Applications in Insurance Mathematics," Papers 2109.11403, arXiv.org, revised Sep 2021.
    9. Fan Cai & Yuesong Jiang & Wanqing Song & Kai-Hung Lu & Tongbo Zhu, 2024. "Short-Term Wind Turbine Blade Icing Wind Power Prediction Based on PCA-fLsm," Energies, MDPI, vol. 17(6), pages 1-15, March.
    10. Kilian D. Stenning & Jack C. Gartside & Luca Manneschi & Christopher T. S. Cheung & Tony Chen & Alex Vanstone & Jake Love & Holly Holder & Francesco Caravelli & Hidekazu Kurebayashi & Karin Everschor-, 2024. "Neuromorphic overparameterisation and few-shot learning in multilayer physical neural networks," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    11. Abbas, Khizar & Han, Mengyao & Xu, Deyi & Butt, Khalid Manzoor & Baz, Khan & Cheng, Jinhua & Zhu, Yongguang & Hussain, Sanwal, 2024. "Exploring synergistic and individual causal effects of rare earth elements and renewable energy on multidimensional economic complexity for sustainable economic development," Applied Energy, Elsevier, vol. 364(C).
    12. Seou Choi & Yannick Salamin & Charles Roques-Carmes & Rumen Dangovski & Di Luo & Zhuo Chen & Michael Horodynski & Jamison Sloan & Shiekh Zia Uddin & Marin Soljačić, 2024. "Photonic probabilistic machine learning using quantum vacuum noise," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    13. Gao Wang & Giulia Marcucci & Benjamin Peters & Maria Chiara Braidotti & Lars Muckli & Daniele Faccio, 2024. "Human-centred physical neuromorphics with visual brain-computer interfaces," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    14. Ruomin Zhu & Sam Lilak & Alon Loeffler & Joseph Lizier & Adam Stieg & James Gimzewski & Zdenka Kuncic, 2023. "Online dynamical learning and sequence memory with neuromorphic nanowire networks," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    15. Federico Ricci & Massimiliano Avana & Francesco Mariani, 2024. "Enhancing Lambda Measurement in Hydrogen-Fueled SI Engines through Virtual Sensor Implementation," Energies, MDPI, vol. 17(16), pages 1-17, August.
    16. Fangjun Hu & Saeed A. Khan & Nicholas T. Bronn & Gerasimos Angelatos & Graham E. Rowlands & Guilhem J. Ribeill & Hakan E. Türeci, 2024. "Overcoming the coherence time barrier in quantum machine learning on temporal data," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    17. Jérémie Laydevant & Danijela Marković & Julie Grollier, 2024. "Training an Ising machine with equilibrium propagation," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    18. Mitsumasa Nakajima & Katsuma Inoue & Kenji Tanaka & Yasuo Kuniyoshi & Toshikazu Hashimoto & Kohei Nakajima, 2022. "Physical deep learning with biologically inspired training method: gradient-free approach for physical hardware," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    19. Hongmei Cui & Zhongyang Li & Bingchuan Sun & Teng Fan & Yonghao Li & Lida Luo & Yong Zhang & Jian Wang, 2022. "A New Ice Quality Prediction Method of Wind Turbine Impeller Based on the Deep Neural Network," Energies, MDPI, vol. 15(22), pages 1-18, November.
    20. Tianyu Wang & Jialin Meng & Xufeng Zhou & Yue Liu & Zhenyu He & Qi Han & Qingxuan Li & Jiajie Yu & Zhenhai Li & Yongkai Liu & Hao Zhu & Qingqing Sun & David Wei Zhang & Peining Chen & Huisheng Peng & , 2022. "Reconfigurable neuromorphic memristor network for ultralow-power smart textile electronics," Nature Communications, Nature, vol. 13(1), pages 1-8, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:14:p:3216-:d:1199774. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.