IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-35349-4.html
   My bibliography  Save this article

Direct retrieval of Zernike-based pupil functions using integrated diffractive deep neural networks

Author

Listed:
  • Elena Goi

    (University of Shanghai for Science and Technology
    University of Shanghai for Science and Technology)

  • Steffen Schoenhardt

    (University of Shanghai for Science and Technology
    University of Shanghai for Science and Technology)

  • Min Gu

    (University of Shanghai for Science and Technology
    University of Shanghai for Science and Technology)

Abstract

Retrieving the pupil phase of a beam path is a central problem for optical systems across scales, from telescopes, where the phase information allows for aberration correction, to the imaging of near-transparent biological samples in phase contrast microscopy. Current phase retrieval schemes rely on complex digital algorithms that process data acquired from precise wavefront sensors, reconstructing the optical phase information at great expense of computational resources. Here, we present a compact optical-electronic module based on multi-layered diffractive neural networks printed on imaging sensors, capable of directly retrieving Zernike-based pupil phase distributions from an incident point spread function. We demonstrate this concept numerically and experimentally, showing the direct pupil phase retrieval of superpositions of the first 14 Zernike polynomials. The integrability of the diffractive elements with CMOS sensors shows the potential for the direct extraction of the pupil phase information from a detector module without additional digital post-processing.

Suggested Citation

  • Elena Goi & Steffen Schoenhardt & Min Gu, 2022. "Direct retrieval of Zernike-based pupil functions using integrated diffractive deep neural networks," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-35349-4
    DOI: 10.1038/s41467-022-35349-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-35349-4
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-35349-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Barnaby R. M. Norris & Jin Wei & Christopher H. Betters & Alison Wong & Sergio G. Leon-Saval, 2020. "An all-photonic focal-plane wavefront sensor," Nature Communications, Nature, vol. 11(1), pages 1-9, December.
    2. J. Feldmann & N. Youngblood & C. D. Wright & H. Bhaskaran & W. H. P. Pernice, 2019. "All-optical spiking neurosynaptic networks with self-learning capabilities," Nature, Nature, vol. 569(7755), pages 208-214, May.
    3. Gordon Wetzstein & Aydogan Ozcan & Sylvain Gigan & Shanhui Fan & Dirk Englund & Marin Soljačić & Cornelia Denz & David A. B. Miller & Demetri Psaltis, 2020. "Inference in artificial intelligence with deep optics and photonics," Nature, Nature, vol. 588(7836), pages 39-47, December.
    4. Michiel Hermans & Michaël Burm & Thomas Van Vaerenbergh & Joni Dambre & Peter Bienstman, 2015. "Trainable hardware for dynamical computing using error backpropagation through physical media," Nature Communications, Nature, vol. 6(1), pages 1-8, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yinan Zhang & Shengting Zhu & Jinming Hu & Min Gu, 2024. "Femtosecond laser direct nanolithography of perovskite hydration for temporally programmable holograms," Nature Communications, Nature, vol. 15(1), pages 1-9, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sajjad Abdollahramezani & Omid Hemmatyar & Mohammad Taghinejad & Hossein Taghinejad & Alex Krasnok & Ali A. Eftekhar & Christian Teichrib & Sanchit Deshmukh & Mostafa A. El-Sayed & Eric Pop & Matthias, 2022. "Electrically driven reprogrammable phase-change metasurface reaching 80% efficiency," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    2. Ui Yeon Won & Quoc An Vu & Sung Bum Park & Mi Hyang Park & Van Dam Do & Hyun Jun Park & Heejun Yang & Young Hee Lee & Woo Jong Yu, 2023. "Multi-neuron connection using multi-terminal floating–gate memristor for unsupervised learning," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    3. H. H. Zhu & J. Zou & H. Zhang & Y. Z. Shi & S. B. Luo & N. Wang & H. Cai & L. X. Wan & B. Wang & X. D. Jiang & J. Thompson & X. S. Luo & X. H. Zhou & L. M. Xiao & W. Huang & L. Patrick & M. Gu & L. C., 2022. "Space-efficient optical computing with an integrated chip diffractive neural network," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    4. Yaoyao Shi & Wei Sheng & Yangyang Fu & Youwen Liu, 2023. "Overlapping speckle correlation algorithm for high-resolution imaging and tracking of objects in unknown scattering media," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    5. Xiaoyun Yuan & Yong Wang & Zhihao Xu & Tiankuang Zhou & Lu Fang, 2023. "Training large-scale optoelectronic neural networks with dual-neuron optical-artificial learning," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    6. Takuya Nakata & Sinan Chen & Masahide Nakamura, 2022. "Uni-Messe: Unified Rule-Based Message Delivery Service for Efficient Context-Aware Service Integration," Energies, MDPI, vol. 15(5), pages 1-18, February.
    7. Xiangyan Meng & Guojie Zhang & Nuannuan Shi & Guangyi Li & José Azaña & José Capmany & Jianping Yao & Yichen Shen & Wei Li & Ninghua Zhu & Ming Li, 2023. "Compact optical convolution processing unit based on multimode interference," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    8. Anqi Ji & Jung-Hwan Song & Qitong Li & Fenghao Xu & Ching-Ting Tsai & Richard C. Tiberio & Bianxiao Cui & Philippe Lalanne & Pieter G. Kik & David A. B. Miller & Mark L. Brongersma, 2022. "Quantitative phase contrast imaging with a nonlocal angle-selective metasurface," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    9. Steven Becker & Dirk Englund & Birgit Stiller, 2024. "An optoacoustic field-programmable perceptron for recurrent neural networks," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    10. Jian Yao & Qinan Wang & Yong Zhang & Yu Teng & Jing Li & Pin Zhao & Chun Zhao & Ziyi Hu & Zongjie Shen & Liwei Liu & Dan Tian & Song Qiu & Zhongrui Wang & Lixing Kang & Qingwen Li, 2024. "Ultra-low power carbon nanotube/porphyrin synaptic arrays for persistent photoconductivity and neuromorphic computing," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    11. Chuyu Zhong & Kun Liao & Tianxiang Dai & Maoliang Wei & Hui Ma & Jianghong Wu & Zhibin Zhang & Yuting Ye & Ye Luo & Zequn Chen & Jialing Jian & Chunlei Sun & Bo Tang & Peng Zhang & Ruonan Liu & Junyin, 2023. "Graphene/silicon heterojunction for reconfigurable phase-relevant activation function in coherent optical neural networks," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    12. Bassem Tossoun & Di Liang & Stanley Cheung & Zhuoran Fang & Xia Sheng & John Paul Strachan & Raymond G. Beausoleil, 2024. "High-speed and energy-efficient non-volatile silicon photonic memory based on heterogeneously integrated memresonator," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    13. Liuting Shan & Qizhen Chen & Rengjian Yu & Changsong Gao & Lujian Liu & Tailiang Guo & Huipeng Chen, 2023. "A sensory memory processing system with multi-wavelength synaptic-polychromatic light emission for multi-modal information recognition," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    14. Yang Shi & Junyu Ren & Guanyu Chen & Wei Liu & Chuqi Jin & Xiangyu Guo & Yu Yu & Xinliang Zhang, 2022. "Nonlinear germanium-silicon photodiode for activation and monitoring in photonic neuromorphic networks," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    15. Minati, Ludovico & Mancinelli, Mattia & Frasca, Mattia & Bettotti, Paolo & Pavesi, Lorenzo, 2021. "An analog electronic emulator of non-linear dynamics in optical microring resonators," Chaos, Solitons & Fractals, Elsevier, vol. 153(P2).
    16. Junwei Cheng & Chaoran Huang & Jialong Zhang & Bo Wu & Wenkai Zhang & Xinyu Liu & Jiahui Zhang & Yiyi Tang & Hailong Zhou & Qiming Zhang & Min Gu & Jianji Dong & Xinliang Zhang, 2024. "Multimodal deep learning using on-chip diffractive optics with in situ training capability," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    17. Jin Zhao & Wen-Xiong Song & Tianjiao Xin & Zhitang Song, 2021. "Rules of hierarchical melt and coordinate bond to design crystallization in doped phase change materials," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    18. Pengzhan Li & Mingzhen Zhang & Qingli Zhou & Qinghua Zhang & Donggang Xie & Ge Li & Zhuohui Liu & Zheng Wang & Erjia Guo & Meng He & Can Wang & Lin Gu & Guozhen Yang & Kuijuan Jin & Chen Ge, 2024. "Reconfigurable optoelectronic transistors for multimodal recognition," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    19. Yuriy Leonidovich Zhukovskiy & Daria Evgenievna Batueva & Alexandra Dmitrievna Buldysko & Bernard Gil & Valeriia Vladimirovna Starshaia, 2021. "Fossil Energy in the Framework of Sustainable Development: Analysis of Prospects and Development of Forecast Scenarios," Energies, MDPI, vol. 14(17), pages 1-28, August.
    20. He-Shan Zhang & Xue-Mei Dong & Zi-Cheng Zhang & Ze-Pu Zhang & Chao-Yi Ban & Zhe Zhou & Cheng Song & Shi-Qi Yan & Qian Xin & Ju-Qing Liu & Yin-Xiang Li & Wei Huang, 2022. "Co-assembled perylene/graphene oxide photosensitive heterobilayer for efficient neuromorphics," Nature Communications, Nature, vol. 13(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-35349-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.