IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-54696-y.html
   My bibliography  Save this article

Automated discovery of experimental designs in super-resolution microscopy with XLuminA

Author

Listed:
  • Carla Rodríguez

    (Max Planck Institute for the Science of Light)

  • Sören Arlt

    (Max Planck Institute for the Science of Light)

  • Leonhard Möckl

    (Max Planck Institute for the Science of Light
    Department of Physics
    Faculty of Medicine 1/CITABLE
    Deutsches Zentrum Immuntherapie (DZI))

  • Mario Krenn

    (Max Planck Institute for the Science of Light)

Abstract

Driven by human ingenuity and creativity, the discovery of super-resolution techniques, which circumvent the classical diffraction limit of light, represent a leap in optical microscopy. However, the vast space encompassing all possible experimental configurations suggests that some powerful concepts and techniques might have not been discovered yet, and might never be with a human-driven direct design approach. Thus, AI-based exploration techniques could provide enormous benefit, by exploring this space in a fast, unbiased way. We introduce XLuminA, an open-source computational framework developed using JAX, a high-performance computing library in Python. XLuminA offers enhanced computational speed enabled by JAX’s accelerated linear algebra compiler (XLA), just-in-time compilation, and its seamlessly integrated automatic vectorization, automatic differentiation capabilities and GPU compatibility. XLuminA demonstrates a speed-up of 4 orders of magnitude compared to well-established numerical optimization methods. We showcase XLuminA’s potential by re-discovering three foundational experiments in advanced microscopy, and identifying an unseen experimental blueprint featuring sub-diffraction imaging capabilities. This work constitutes an important step in AI-driven scientific discovery of new concepts in optics and advanced microscopy.

Suggested Citation

  • Carla Rodríguez & Sören Arlt & Leonhard Möckl & Mario Krenn, 2024. "Automated discovery of experimental designs in super-resolution microscopy with XLuminA," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-54696-y
    DOI: 10.1038/s41467-024-54696-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-54696-y
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-54696-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Logan G. Wright & Tatsuhiro Onodera & Martin M. Stein & Tianyu Wang & Darren T. Schachter & Zoey Hu & Peter L. McMahon, 2022. "Deep physical neural networks trained with backpropagation," Nature, Nature, vol. 601(7894), pages 549-555, January.
    2. Nicolas K. Fontaine & Roland Ryf & Haoshuo Chen & David T. Neilson & Kwangwoong Kim & Joel Carpenter, 2019. "Laguerre-Gaussian mode sorter," Nature Communications, Nature, vol. 10(1), pages 1-7, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fan Cai & Yuesong Jiang & Wanqing Song & Kai-Hung Lu & Tongbo Zhu, 2024. "Short-Term Wind Turbine Blade Icing Wind Power Prediction Based on PCA-fLsm," Energies, MDPI, vol. 17(6), pages 1-15, March.
    2. Kilian D. Stenning & Jack C. Gartside & Luca Manneschi & Christopher T. S. Cheung & Tony Chen & Alex Vanstone & Jake Love & Holly Holder & Francesco Caravelli & Hidekazu Kurebayashi & Karin Everschor-, 2024. "Neuromorphic overparameterisation and few-shot learning in multilayer physical neural networks," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    3. Abbas, Khizar & Han, Mengyao & Xu, Deyi & Butt, Khalid Manzoor & Baz, Khan & Cheng, Jinhua & Zhu, Yongguang & Hussain, Sanwal, 2024. "Exploring synergistic and individual causal effects of rare earth elements and renewable energy on multidimensional economic complexity for sustainable economic development," Applied Energy, Elsevier, vol. 364(C).
    4. Seou Choi & Yannick Salamin & Charles Roques-Carmes & Rumen Dangovski & Di Luo & Zhuo Chen & Michael Horodynski & Jamison Sloan & Shiekh Zia Uddin & Marin Soljačić, 2024. "Photonic probabilistic machine learning using quantum vacuum noise," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    5. Rodrigo Gutiérrez-Cuevas & Dorian Bouchet & Julien Rosny & Sébastien M. Popoff, 2024. "Reaching the precision limit with tensor-based wavefront shaping," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    6. Gao Wang & Giulia Marcucci & Benjamin Peters & Maria Chiara Braidotti & Lars Muckli & Daniele Faccio, 2024. "Human-centred physical neuromorphics with visual brain-computer interfaces," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    7. Lei Tong & Yali Bi & Yilun Wang & Kai Peng & Xinyu Huang & Wei Ju & Zhuiri Peng & Zheng Li & Langlang Xu & Runfeng Lin & Xiangxiang Yu & Wenhao Shi & Hui Yu & Huajun Sun & Kanhao Xue & Qiang He & Ming, 2024. "Programmable nonlinear optical neuromorphic computing with bare 2D material MoS2," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    8. Hengfei Yang & Shiyuan Yang & Debiao Meng & Chenghao Hu & Chaosheng Wu & Bo Yang & Peng Nie & Yuan Si & Xiaoyan Su, 2024. "Optimization of Analog Circuit Parameters Using Bidirectional Long Short-Term Memory Coupled with an Enhanced Whale Optimization Algorithm," Mathematics, MDPI, vol. 13(1), pages 1-24, December.
    9. Jamshaid Ul Rahman & Sana Danish & Dianchen Lu, 2023. "Deep Neural Network-Based Simulation of Sel’kov Model in Glycolysis: A Comprehensive Analysis," Mathematics, MDPI, vol. 11(14), pages 1-9, July.
    10. Ruomin Zhu & Sam Lilak & Alon Loeffler & Joseph Lizier & Adam Stieg & James Gimzewski & Zdenka Kuncic, 2023. "Online dynamical learning and sequence memory with neuromorphic nanowire networks," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    11. Federico Ricci & Massimiliano Avana & Francesco Mariani, 2024. "Enhancing Lambda Measurement in Hydrogen-Fueled SI Engines through Virtual Sensor Implementation," Energies, MDPI, vol. 17(16), pages 1-17, August.
    12. Xin Liu & Qian Cao & Nianjia Zhang & Andy Chong & Yangjian Cai & Qiwen Zhan, 2024. "Spatiotemporal optical vortices with controllable radial and azimuthal quantum numbers," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    13. Fangjun Hu & Saeed A. Khan & Nicholas T. Bronn & Gerasimos Angelatos & Graham E. Rowlands & Guilhem J. Ribeill & Hakan E. Türeci, 2024. "Overcoming the coherence time barrier in quantum machine learning on temporal data," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    14. Jérémie Laydevant & Danijela Marković & Julie Grollier, 2024. "Training an Ising machine with equilibrium propagation," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    15. Martin Plöschner & Marcos Maestre Morote & Daniel Stephen Dahl & Mickael Mounaix & Greta Light & Aleksandar D. Rakić & Joel Carpenter, 2022. "Spatial tomography of light resolved in time, spectrum, and polarisation," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    16. Kaihang Lu & Zengqi Chen & Hao Chen & Wu Zhou & Zunyue Zhang & Hon Ki Tsang & Yeyu Tong, 2024. "Empowering high-dimensional optical fiber communications with integrated photonic processors," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    17. Federico Ricci & Massimiliano Avana & Francesco Mariani, 2025. "Artificial Neural Networks as a Tool for High-Accuracy Prediction of In-Cylinder Pressure and Equivalent Flame Radius in Hydrogen-Fueled Internal Combustion Engines," Energies, MDPI, vol. 18(2), pages 1-23, January.
    18. Chao Qian & Zhedong Wang & Haoliang Qian & Tong Cai & Bin Zheng & Xiao Lin & Yichen Shen & Ido Kaminer & Erping Li & Hongsheng Chen, 2022. "Dynamic recognition and mirage using neuro-metamaterials," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    19. Mitsumasa Nakajima & Katsuma Inoue & Kenji Tanaka & Yasuo Kuniyoshi & Toshikazu Hashimoto & Kohei Nakajima, 2022. "Physical deep learning with biologically inspired training method: gradient-free approach for physical hardware," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    20. Hongmei Cui & Zhongyang Li & Bingchuan Sun & Teng Fan & Yonghao Li & Lida Luo & Yong Zhang & Jian Wang, 2022. "A New Ice Quality Prediction Method of Wind Turbine Impeller Based on the Deep Neural Network," Energies, MDPI, vol. 15(22), pages 1-18, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-54696-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.