IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v10y2019i1d10.1038_s41467-019-09840-4.html
   My bibliography  Save this article

Laguerre-Gaussian mode sorter

Author

Listed:
  • Nicolas K. Fontaine

    (Nokia Bell Labs)

  • Roland Ryf

    (Nokia Bell Labs)

  • Haoshuo Chen

    (Nokia Bell Labs)

  • David T. Neilson

    (Nokia Bell Labs)

  • Kwangwoong Kim

    (Nokia Bell Labs)

  • Joel Carpenter

    (The University of Queensland)

Abstract

Exploiting a particular wave property for a particular application necessitates components capable of discriminating in the basis of that property. While spectral or polarisation decomposition can be straightforward, spatial decomposition is inherently more difficult and few options exist regardless of wave type. Fourier decomposition by a lens is a rare simple example of a spatial decomposition of great practical importance and practical simplicity; a two-dimensional decomposition of a beam into its linear momentum components. Yet this is often not the most appropriate spatial basis. Previously, no device existed capable of a two-dimensional decomposition into orbital angular momentum components, or indeed any discrete basis, despite it being a fundamental property in many wave phenomena. We demonstrate an optical device capable of decomposing a beam into a Cartesian grid of identical Gaussian spots each containing a single Laguerre-Gaussian component, using just a spatial light modulator and mirror.

Suggested Citation

  • Nicolas K. Fontaine & Roland Ryf & Haoshuo Chen & David T. Neilson & Kwangwoong Kim & Joel Carpenter, 2019. "Laguerre-Gaussian mode sorter," Nature Communications, Nature, vol. 10(1), pages 1-7, December.
  • Handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-09840-4
    DOI: 10.1038/s41467-019-09840-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-019-09840-4
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-019-09840-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Martin Plöschner & Marcos Maestre Morote & Daniel Stephen Dahl & Mickael Mounaix & Greta Light & Aleksandar D. Rakić & Joel Carpenter, 2022. "Spatial tomography of light resolved in time, spectrum, and polarisation," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    2. Ugo Zanforlin & Cosmo Lupo & Peter W. R. Connolly & Pieter Kok & Gerald S. Buller & Zixin Huang, 2022. "Optical quantum super-resolution imaging and hypothesis testing," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    3. Rodrigo Gutiérrez-Cuevas & Dorian Bouchet & Julien Rosny & Sébastien M. Popoff, 2024. "Reaching the precision limit with tensor-based wavefront shaping," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    4. Kaiheng Zou & Kai Pang & Hao Song & Jintao Fan & Zhe Zhao & Haoqian Song & Runzhou Zhang & Huibin Zhou & Amir Minoofar & Cong Liu & Xinzhou Su & Nanzhe Hu & Andrew McClung & Mahsa Torfeh & Amir Arbabi, 2022. "High-capacity free-space optical communications using wavelength- and mode-division-multiplexing in the mid-infrared region," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    5. Kaihang Lu & Zengqi Chen & Hao Chen & Wu Zhou & Zunyue Zhang & Hon Ki Tsang & Yeyu Tong, 2024. "Empowering high-dimensional optical fiber communications with integrated photonic processors," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    6. Raoul Trines & Holger Schmitz & Martin King & Paul McKenna & Robert Bingham, 2024. "Laser harmonic generation with independent control of frequency and orbital angular momentum," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    7. Xin Liu & Qian Cao & Nianjia Zhang & Andy Chong & Yangjian Cai & Qiwen Zhan, 2024. "Spatiotemporal optical vortices with controllable radial and azimuthal quantum numbers," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    8. Chao Qian & Zhedong Wang & Haoliang Qian & Tong Cai & Bin Zheng & Xiao Lin & Yichen Shen & Ido Kaminer & Erping Li & Hongsheng Chen, 2022. "Dynamic recognition and mirage using neuro-metamaterials," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    9. Carla Rodríguez & Sören Arlt & Leonhard Möckl & Mario Krenn, 2024. "Automated discovery of experimental designs in super-resolution microscopy with XLuminA," Nature Communications, Nature, vol. 15(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-09840-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.