IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-54628-w.html
   My bibliography  Save this article

Multi-protomics analysis identified host cellular pathways perturbed by tick-borne encephalitis virus infection

Author

Listed:
  • Liyan Sui

    (The First Hospital of Jilin University)

  • Wenfang Wang

    (The First Hospital of Jilin University
    Jilin University)

  • Xuerui Guo

    (Jilin University)

  • Yinghua Zhao

    (The First Hospital of Jilin University)

  • Tian Tian

    (Jilin University)

  • Jinlong Zhang

    (Jilin University)

  • Heming Wang

    (Ltd)

  • Yueshan Xu

    (Changchun University of Chinese Medicine)

  • Hongmiao Chi

    (The First Hospital of Jilin University)

  • Hanxi Xie

    (Jilin University)

  • Wenbo Xu

    (The First Hospital of Jilin University)

  • Nan Liu

    (The First Hospital of Jilin University)

  • Li Zhao

    (The First Hospital of Jilin University)

  • Guangqi Song

    (Ltd)

  • Zedong Wang

    (The First Hospital of Jilin University)

  • Kaiyu Zhang

    (The First Hospital of Jilin University)

  • Lihe Che

    (The First Hospital of Jilin University)

  • Yicheng Zhao

    (The First Hospital of Jilin University
    Changchun University of Chinese Medicine
    China-Japan Union Hospital of Jilin University)

  • Guoqing Wang

    (Jilin University)

  • Quan Liu

    (The First Hospital of Jilin University
    Chinese Academy of Agricultural Sciences)

Abstract

Tick-borne encephalitis virus (TBEV) represents a pivotal tick-transmitted flavivirus responsible for severe neurological consequences in Europe and Asia. The emergence of TBEV genetic mutations and vaccine-breakthrough infections, along with the absence of effective vaccines and specific drugs for other tick-borne flaviviruses associated with severe encephalitis or hemorrhagic fever, underscores the urgent need for progress in understanding the pathogenesis and intervention strategies for TBEV and related flaviviruses. Here we elucidate cellular alterations in the proteome, phosphoproteome, and acetylproteome upon TBEV infection. Our findings reveal a substantial impact of TBEV infection on the innate immune response, ribosomal biogenesis, autophagy, and DNA damage response (DDR). Mechanically, the non-structural protein NS5 of TBEV impedes DNA damage repair by interacting with SIRT1 to suppress the deacetylation of KAP1 and Ku70. Additionally, the precursor membrane protein prM induces autophagy via associating with AKT1 while constrains autolysosome formation through binding to VPS11. Inhibitors targeting DDR, as well as specific kinases, exhibit potent antiviral activity, suggesting the dysregulated pathways and kinases as potential targets for antiviral intervention. These results from our study contribute to elucidating the pathogenesis and offers insights for developing effective antiviral drugs against TBEV and other tick-borne flaviviruses.

Suggested Citation

  • Liyan Sui & Wenfang Wang & Xuerui Guo & Yinghua Zhao & Tian Tian & Jinlong Zhang & Heming Wang & Yueshan Xu & Hongmiao Chi & Hanxi Xie & Wenbo Xu & Nan Liu & Li Zhao & Guangqi Song & Zedong Wang & Kai, 2024. "Multi-protomics analysis identified host cellular pathways perturbed by tick-borne encephalitis virus infection," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-54628-w
    DOI: 10.1038/s41467-024-54628-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-54628-w
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-54628-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Alexey Stukalov & Virginie Girault & Vincent Grass & Ozge Karayel & Valter Bergant & Christian Urban & Darya A. Haas & Yiqi Huang & Lila Oubraham & Anqi Wang & M. Sabri Hamad & Antonio Piras & Fynn M., 2021. "Multilevel proteomics reveals host perturbations by SARS-CoV-2 and SARS-CoV," Nature, Nature, vol. 594(7862), pages 246-252, June.
    2. Pietro Scaturro & Alexey Stukalov & Darya A. Haas & Mirko Cortese & Kalina Draganova & Anna Płaszczyca & Ralf Bartenschlager & Magdalena Götz & Andreas Pichlmair, 2018. "An orthogonal proteomic survey uncovers novel Zika virus host factors," Nature, Nature, vol. 561(7722), pages 253-257, September.
    3. Esther Ortega & Srinivasan Rengachari & Ziad Ibrahim & Naghmeh Hoghoughi & Jonathan Gaucher & Alex S. Holehouse & Saadi Khochbin & Daniel Panne, 2018. "Transcription factor dimerization activates the p300 acetyltransferase," Nature, Nature, vol. 562(7728), pages 538-544, October.
    4. Eunhye Lee & Paul J. Bujalowski & Tadahisa Teramoto & Keerthi Gottipati & Seth D. Scott & Radhakrishnan Padmanabhan & Kyung H. Choi, 2021. "Structures of flavivirus RNA promoters suggest two binding modes with NS5 polymerase," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    5. Maria I. Giraldo & Hongjie Xia & Leopoldo Aguilera-Aguirre & Adam Hage & Sarah van Tol & Chao Shan & Xuping Xie & Gail L. Sturdevant & Shelly J. Robertson & Kristin L. McNally & Kimberly Meade-White &, 2020. "Envelope protein ubiquitination drives entry and pathogenesis of Zika virus," Nature, Nature, vol. 585(7825), pages 414-419, September.
    6. Tea Carletti & Mohammad Khalid Zakaria & Valentina Faoro & Laura Reale & Yvette Kazungu & Danilo Licastro & Alessandro Marcello, 2019. "Viral priming of cell intrinsic innate antiviral signaling by the unfolded protein response," Nature Communications, Nature, vol. 10(1), pages 1-9, December.
    7. Kelsey M. Haas & Michael J. McGregor & Mehdi Bouhaddou & Benjamin J. Polacco & Eun-Young Kim & Thong T. Nguyen & Billy W. Newton & Matthew Urbanowski & Heejin Kim & Michael A. P. Williams & Veronica V, 2023. "Proteomic and genetic analyses of influenza A viruses identify pan-viral host targets," Nature Communications, Nature, vol. 14(1), pages 1-27, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yiqi Huang & Valter Bergant & Vincent Grass & Quirin Emslander & M. Sabri Hamad & Philipp Hubel & Julia Mergner & Antonio Piras & Karsten Krey & Alexander Henrici & Rupert Öllinger & Yonas M. Tesfamar, 2024. "Multi-omics characterization of the monkeypox virus infection," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    2. Valter Bergant & Daniel Schnepf & Niklas Andrade Krätzig & Philipp Hubel & Christian Urban & Thomas Engleitner & Ronald Dijkman & Bernhard Ryffel & Katja Steiger & Percy A. Knolle & Georg Kochs & Rola, 2023. "mRNA 3’UTR lengthening by alternative polyadenylation attenuates inflammatory responses and correlates with virulence of Influenza A virus," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    3. Maria Gonzalez-Orozco & Hsiang-chi Tseng & Adam Hage & Hongjie Xia & Padmanava Behera & Kazi Afreen & Yoatzin Peñaflor-Tellez & Maria I. Giraldo & Matthew Huante & Lucinda Puebla-Clark & Sarah Tol & A, 2024. "TRIM7 ubiquitinates SARS-CoV-2 membrane protein to limit apoptosis and viral replication," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    4. Friederike L. Pennemann & Assel Mussabekova & Christian Urban & Alexey Stukalov & Line Lykke Andersen & Vincent Grass & Teresa Maria Lavacca & Cathleen Holze & Lila Oubraham & Yasmine Benamrouche & En, 2021. "Cross-species analysis of viral nucleic acid interacting proteins identifies TAOKs as innate immune regulators," Nature Communications, Nature, vol. 12(1), pages 1-22, December.
    5. Tim Liebner & Sinan Kilic & Jonas Walter & Hitoshi Aibara & Takeo Narita & Chunaram Choudhary, 2024. "Acetylation of histones and non-histone proteins is not a mere consequence of ongoing transcription," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    6. Masaki Kikuchi & Satoshi Morita & Masatoshi Wakamori & Shin Sato & Tomomi Uchikubo-Kamo & Takehiro Suzuki & Naoshi Dohmae & Mikako Shirouzu & Takashi Umehara, 2023. "Epigenetic mechanisms to propagate histone acetylation by p300/CBP," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    7. Jerricho Tipo & Keerthi Gottipati & Michael Slaton & Giovanni Gonzalez-Gutierrez & Kyung H. Choi, 2024. "Structure of HIV-1 RRE stem-loop II identifies two conformational states of the high-affinity Rev binding site," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    8. Sara Sunshine & Andreas S. Puschnik & Joseph M. Replogle & Matthew T. Laurie & Jamin Liu & Beth Shoshana Zha & James K. Nuñez & Janie R. Byrum & Aidan H. McMorrow & Matthew B. Frieman & Juliane Winkle, 2023. "Systematic functional interrogation of SARS-CoV-2 host factors using Perturb-seq," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    9. Thomas Kruse & Caroline Benz & Dimitriya H. Garvanska & Richard Lindqvist & Filip Mihalic & Fabian Coscia & Raviteja Inturi & Ahmed Sayadi & Leandro Simonetti & Emma Nilsson & Muhammad Ali & Johanna K, 2021. "Large scale discovery of coronavirus-host factor protein interaction motifs reveals SARS-CoV-2 specific mechanisms and vulnerabilities," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    10. Zhou Huang & Hejun Liu & Jay Nix & Rui Xu & Catherine R. Knoverek & Gregory R. Bowman & Gaya K. Amarasinghe & L. David Sibley, 2022. "The intrinsically disordered protein TgIST from Toxoplasma gondii inhibits STAT1 signaling by blocking cofactor recruitment," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    11. Linliang Zhang & Hongyun Wang & Chao Han & Qi Dong & Jie Yan & Weiwei Guo & Chao Shan & Wen Zhao & Pu Chen & Rui Huang & Ying Wu & Yu Chen & Yali Qin & Mingzhou Chen, 2024. "AMFR-mediated Flavivirus NS2A ubiquitination subverts ER-phagy to augment viral pathogenicity," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    12. Solène Denolly & Alexey Stukalov & Uladzimir Barayeu & Alina N. Rosinski & Paraskevi Kritsiligkou & Sebastian Joecks & Tobias P. Dick & Andreas Pichlmair & Ralf Bartenschlager, 2023. "Zika virus remodelled ER membranes contain proviral factors involved in redox and methylation pathways," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    13. Di Yu & Yingying Liang & Claudia Kim & Anbalagan Jaganathan & Donglei Ji & Xinye Han & Xuelan Yang & Yanjie Jia & Ruirui Gu & Chunyu Wang & Qiang Zhang & Ka Lung Cheung & Ming-Ming Zhou & Lei Zeng, 2023. "Structural mechanism of BRD4-NUT and p300 bipartite interaction in propagating aberrant gene transcription in chromatin in NUT carcinoma," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    14. Haris Babačić & Wanda Christ & José Eduardo Araújo & Georgios Mermelekas & Nidhi Sharma & Janne Tynell & Marina García & Renata Varnaite & Hilmir Asgeirsson & Hedvig Glans & Janne Lehtiö & Sara Gredma, 2023. "Comprehensive proteomics and meta-analysis of COVID-19 host response," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    15. Ma’ayan Israeli & Yaara Finkel & Yfat Yahalom-Ronen & Nir Paran & Theodor Chitlaru & Ofir Israeli & Inbar Cohen-Gihon & Moshe Aftalion & Reut Falach & Shahar Rotem & Uri Elia & Ital Nemet & Limor Klik, 2022. "Genome-wide CRISPR screens identify GATA6 as a proviral host factor for SARS-CoV-2 via modulation of ACE2," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    16. Yuege Huang & Hong Mei & Chunchen Deng & Wei Wang & Chao Yuan & Yan Nie & Jia-Da Li & Jia Liu, 2024. "EXTL3 and NPC1 are mammalian host factors for Autographa californica multiple nucleopolyhedrovirus infection," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    17. Elizabeth A. R. Garfinkle & Pratima Nallagatla & Binay Sahoo & Jinjun Dang & Mohammad Balood & Anitria Cotton & Camryn Franke & Sharnise Mitchell & Taylor Wilson & Tanja A. Gruber, 2024. "CBFA2T3-GLIS2 mediates transcriptional regulation of developmental pathways through a gene regulatory network," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    18. Mandy S. M. Wan & Reyhan Muhammad & Marios G. Koliopoulos & Theodoros I. Roumeliotis & Jyoti S. Choudhary & Claudio Alfieri, 2023. "Mechanism of assembly, activation and lysine selection by the SIN3B histone deacetylase complex," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    19. Ziad Ibrahim & Tao Wang & Olivier Destaing & Nicola Salvi & Naghmeh Hoghoughi & Clovis Chabert & Alexandra Rusu & Jinjun Gao & Leonardo Feletto & Nicolas Reynoird & Thomas Schalch & Yingming Zhao & Ma, 2022. "Structural insights into p300 regulation and acetylation-dependent genome organisation," Nature Communications, Nature, vol. 13(1), pages 1-23, December.
    20. Emilie Murigneux & Laurent Softic & Corentin Aubé & Carmen Grandi & Delphine Judith & Johanna Bruce & Morgane Le Gall & François Guillonneau & Alain Schmitt & Vincent Parissi & Clarisse Berlioz-Torren, 2024. "Proteomic analysis of SARS-CoV-2 particles unveils a key role of G3BP proteins in viral assembly," Nature Communications, Nature, vol. 15(1), pages 1-17, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-54628-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.