Acetylation of histones and non-histone proteins is not a mere consequence of ongoing transcription
Author
Abstract
Suggested Citation
DOI: 10.1038/s41467-024-49370-2
Download full text from publisher
References listed on IDEAS
- Esther Ortega & Srinivasan Rengachari & Ziad Ibrahim & Naghmeh Hoghoughi & Jonathan Gaucher & Alex S. Holehouse & Saadi Khochbin & Daniel Panne, 2018. "Transcription factor dimerization activates the p300 acetyltransferase," Nature, Nature, vol. 562(7728), pages 538-544, October.
- Yupeng Zheng & Paul M. Thomas & Neil L. Kelleher, 2013. "Measurement of acetylation turnover at distinct lysines in human histones identifies long-lived acetylation sites," Nature Communications, Nature, vol. 4(1), pages 1-8, October.
- Bogi Karbech Hansen & Rajat Gupta & Linda Baldus & David Lyon & Takeo Narita & Michael Lammers & Chunaram Choudhary & Brian T. Weinert, 2019. "Analysis of human acetylation stoichiometry defines mechanistic constraints on protein regulation," Nature Communications, Nature, vol. 10(1), pages 1-11, December.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Masaki Kikuchi & Satoshi Morita & Masatoshi Wakamori & Shin Sato & Tomomi Uchikubo-Kamo & Takehiro Suzuki & Naoshi Dohmae & Mikako Shirouzu & Takashi Umehara, 2023. "Epigenetic mechanisms to propagate histone acetylation by p300/CBP," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
- Zhou Huang & Hejun Liu & Jay Nix & Rui Xu & Catherine R. Knoverek & Gregory R. Bowman & Gaya K. Amarasinghe & L. David Sibley, 2022. "The intrinsically disordered protein TgIST from Toxoplasma gondii inhibits STAT1 signaling by blocking cofactor recruitment," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
- Di Yu & Yingying Liang & Claudia Kim & Anbalagan Jaganathan & Donglei Ji & Xinye Han & Xuelan Yang & Yanjie Jia & Ruirui Gu & Chunyu Wang & Qiang Zhang & Ka Lung Cheung & Ming-Ming Zhou & Lei Zeng, 2023. "Structural mechanism of BRD4-NUT and p300 bipartite interaction in propagating aberrant gene transcription in chromatin in NUT carcinoma," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
- Elizabeth A. R. Garfinkle & Pratima Nallagatla & Binay Sahoo & Jinjun Dang & Mohammad Balood & Anitria Cotton & Camryn Franke & Sharnise Mitchell & Taylor Wilson & Tanja A. Gruber, 2024. "CBFA2T3-GLIS2 mediates transcriptional regulation of developmental pathways through a gene regulatory network," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
- Michael S. Werner & Tobias Loschko & Thomas King & Shelley Reich & Tobias Theska & Mirita Franz-Wachtel & Boris Macek & Ralf J. Sommer, 2023. "Histone 4 lysine 5/12 acetylation enables developmental plasticity of Pristionchus mouth form," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
- Mandy S. M. Wan & Reyhan Muhammad & Marios G. Koliopoulos & Theodoros I. Roumeliotis & Jyoti S. Choudhary & Claudio Alfieri, 2023. "Mechanism of assembly, activation and lysine selection by the SIN3B histone deacetylase complex," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
- Ziad Ibrahim & Tao Wang & Olivier Destaing & Nicola Salvi & Naghmeh Hoghoughi & Clovis Chabert & Alexandra Rusu & Jinjun Gao & Leonardo Feletto & Nicolas Reynoird & Thomas Schalch & Yingming Zhao & Ma, 2022. "Structural insights into p300 regulation and acetylation-dependent genome organisation," Nature Communications, Nature, vol. 13(1), pages 1-23, December.
- Ziping Niu & Chen Chen & Siyu Wang & Congcong Lu & Zhiyue Wu & Aiyuan Wang & Jing Mo & Jianji Zhang & Yanpu Han & Ye Yuan & Yingao Zhang & Yong Zang & Chaoran He & Xue Bai & Shanshan Tian & Guijin Zha, 2024. "HBO1 catalyzes lysine lactylation and mediates histone H3K9la to regulate gene transcription," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-49370-2. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.