IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-54762-5.html
   My bibliography  Save this article

TRIM7 ubiquitinates SARS-CoV-2 membrane protein to limit apoptosis and viral replication

Author

Listed:
  • Maria Gonzalez-Orozco

    (University of Texas Medical Branch)

  • Hsiang-chi Tseng

    (Rutgers University)

  • Adam Hage

    (University of Texas Medical Branch)

  • Hongjie Xia

    (University of Texas Medical Branch)

  • Padmanava Behera

    (Rutgers University)

  • Kazi Afreen

    (Rutgers University)

  • Yoatzin Peñaflor-Tellez

    (Rutgers University)

  • Maria I. Giraldo

    (University of Texas Medical Branch)

  • Matthew Huante

    (University of Texas Medical Branch)

  • Lucinda Puebla-Clark

    (University of Texas Medical Branch)

  • Sarah Tol

    (University of Texas Medical Branch)

  • Abby Odle

    (Rutgers University)

  • Matthew Crown

    (Northumbria University)

  • Natalia Teruel

    (Université de Montréal)

  • Thomas R. Shelite

    (University of Texas Medical Branch)

  • Joaquin Moreno-Contreras

    (Rutgers University)

  • Kaori Terasaki

    (University of Texas Medical Branch)

  • Shinji Makino

    (University of Texas Medical Branch)

  • Vineet Menachery

    (University of Texas Medical Branch)

  • Mark Endsley

    (University of Texas Medical Branch)

  • Janice J. Endsley

    (University of Texas Medical Branch)

  • Rafael J. Najmanovich

    (Université de Montréal)

  • Matthew Bashton

    (Northumbria University)

  • Robin Stephens

    (University of Texas Medical Branch
    Rutgers University)

  • Pei-Yong Shi

    (University of Texas Medical Branch)

  • Xuping Xie

    (University of Texas Medical Branch)

  • Alexander N. Freiberg

    (University of Texas Medical Branch)

  • Ricardo Rajsbaum

    (University of Texas Medical Branch
    Rutgers University)

Abstract

SARS-CoV-2 is a highly transmissible virus that causes COVID-19 disease. Mechanisms of viral pathogenesis include excessive inflammation and viral-induced cell death, resulting in tissue damage. Here we show that the host E3-ubiquitin ligase TRIM7 acts as an inhibitor of apoptosis and SARS-CoV-2 replication via ubiquitination of the viral membrane (M) protein. Trim7-/- mice exhibit increased pathology and virus titers associated with epithelial apoptosis and dysregulated immune responses. Mechanistically, TRIM7 ubiquitinates M on K14, which protects cells from cell death. Longitudinal SARS-CoV-2 sequence analysis from infected patients reveal that mutations on M-K14 appeared in circulating variants during the pandemic. The relevance of these mutations was tested in a mouse model. A recombinant M-K14/K15R virus shows reduced viral replication, consistent with the role of K15 in virus assembly, and increased levels of apoptosis associated with the loss of ubiquitination on K14. TRIM7 antiviral activity requires caspase-6 inhibition, linking apoptosis with viral replication and pathology.

Suggested Citation

  • Maria Gonzalez-Orozco & Hsiang-chi Tseng & Adam Hage & Hongjie Xia & Padmanava Behera & Kazi Afreen & Yoatzin Peñaflor-Tellez & Maria I. Giraldo & Matthew Huante & Lucinda Puebla-Clark & Sarah Tol & A, 2024. "TRIM7 ubiquitinates SARS-CoV-2 membrane protein to limit apoptosis and viral replication," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-54762-5
    DOI: 10.1038/s41467-024-54762-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-54762-5
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-54762-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Alexey Stukalov & Virginie Girault & Vincent Grass & Ozge Karayel & Valter Bergant & Christian Urban & Darya A. Haas & Yiqi Huang & Lila Oubraham & Anqi Wang & M. Sabri Hamad & Antonio Piras & Fynn M., 2021. "Multilevel proteomics reveals host perturbations by SARS-CoV-2 and SARS-CoV," Nature, Nature, vol. 594(7862), pages 246-252, June.
    2. Atanu Chakraborty & Markus E. Diefenbacher & Anastasia Mylona & Olivier Kassel & Axel Behrens, 2015. "The E3 ubiquitin ligase Trim7 mediates c-Jun/AP-1 activation by Ras signalling," Nature Communications, Nature, vol. 6(1), pages 1-12, November.
    3. Hin Chu & Yuxin Hou & Dong Yang & Lei Wen & Huiping Shuai & Chaemin Yoon & Jialu Shi & Yue Chai & Terrence Tsz-Tai Yuen & Bingjie Hu & Cun Li & Xiaoyu Zhao & Yixin Wang & Xiner Huang & Kin Shing Lee &, 2022. "Coronaviruses exploit a host cysteine-aspartic protease for replication," Nature, Nature, vol. 609(7928), pages 785-792, September.
    4. Maria I. Giraldo & Hongjie Xia & Leopoldo Aguilera-Aguirre & Adam Hage & Sarah van Tol & Chao Shan & Xuping Xie & Gail L. Sturdevant & Shelly J. Robertson & Kristin L. McNally & Kimberly Meade-White &, 2020. "Envelope protein ubiquitination drives entry and pathogenesis of Zika virus," Nature, Nature, vol. 585(7825), pages 414-419, September.
    5. Zhikuan Zhang & Norimichi Nomura & Yukiko Muramoto & Toru Ekimoto & Tomoko Uemura & Kehong Liu & Moeko Yui & Nozomu Kono & Junken Aoki & Mitsunori Ikeguchi & Takeshi Noda & So Iwata & Umeharu Ohto & T, 2022. "Structure of SARS-CoV-2 membrane protein essential for virus assembly," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    6. Xiaobo Lei & Xiaojing Dong & Ruiyi Ma & Wenjing Wang & Xia Xiao & Zhongqin Tian & Conghui Wang & Ying Wang & Li Li & Lili Ren & Fei Guo & Zhendong Zhao & Zhuo Zhou & Zichun Xiang & Jianwei Wang, 2020. "Activation and evasion of type I interferon responses by SARS-CoV-2," Nature Communications, Nature, vol. 11(1), pages 1-12, December.
    7. Toni M. Delorey & Carly G. K. Ziegler & Graham Heimberg & Rachelly Normand & Yiming Yang & Åsa Segerstolpe & Domenic Abbondanza & Stephen J. Fleming & Ayshwarya Subramanian & Daniel T. Montoro & Karth, 2021. "COVID-19 tissue atlases reveal SARS-CoV-2 pathology and cellular targets," Nature, Nature, vol. 595(7865), pages 107-113, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiaolei Wang & Terrence Tsz-Tai Yuen & Ying Dou & Jingchu Hu & Renhao Li & Zheng Zeng & Xuansheng Lin & Huarui Gong & Celia Hoi-Ching Chan & Chaemin Yoon & Huiping Shuai & Deborah Tip-Yin Ho & Ivan Fa, 2023. "Vaccine-induced protection against SARS-CoV-2 requires IFN-γ-driven cellular immune response," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    2. Liyan Sui & Wenfang Wang & Xuerui Guo & Yinghua Zhao & Tian Tian & Jinlong Zhang & Heming Wang & Yueshan Xu & Hongmiao Chi & Hanxi Xie & Wenbo Xu & Nan Liu & Li Zhao & Guangqi Song & Zedong Wang & Kai, 2024. "Multi-protomics analysis identified host cellular pathways perturbed by tick-borne encephalitis virus infection," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    3. Guoli Shi & Tiansheng Li & Kin Kui Lai & Reed F. Johnson & Jonathan W. Yewdell & Alex A. Compton, 2024. "Omicron Spike confers enhanced infectivity and interferon resistance to SARS-CoV-2 in human nasal tissue," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    4. Shelly J. Robertson & Olivia Bedard & Kristin L. McNally & Carl Shaia & Chad S. Clancy & Matthew Lewis & Rebecca M. Broeckel & Abhilash I. Chiramel & Jeffrey G. Shannon & Gail L. Sturdevant & Rebecca , 2023. "Genetically diverse mouse models of SARS-CoV-2 infection reproduce clinical variation in type I interferon and cytokine responses in COVID-19," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    5. Yiqi Huang & Valter Bergant & Vincent Grass & Quirin Emslander & M. Sabri Hamad & Philipp Hubel & Julia Mergner & Antonio Piras & Karsten Krey & Alexander Henrici & Rupert Öllinger & Yonas M. Tesfamar, 2024. "Multi-omics characterization of the monkeypox virus infection," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    6. Sung Hee Ko & Pierce Radecki & Frida Belinky & Jinal N. Bhiman & Susan Meiring & Jackie Kleynhans & Daniel Amoako & Vanessa Guerra Canedo & Margaret Lucas & Dikeledi Kekana & Neil Martinson & Limakats, 2024. "Rapid intra-host diversification and evolution of SARS-CoV-2 in advanced HIV infection," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    7. Sara Sunshine & Andreas S. Puschnik & Joseph M. Replogle & Matthew T. Laurie & Jamin Liu & Beth Shoshana Zha & James K. Nuñez & Janie R. Byrum & Aidan H. McMorrow & Matthew B. Frieman & Juliane Winkle, 2023. "Systematic functional interrogation of SARS-CoV-2 host factors using Perturb-seq," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    8. Xiaopan Gao & Huabin Tian & Kaixiang Zhu & Qing Li & Wei Hao & Linyue Wang & Bo Qin & Hongyu Deng & Sheng Cui, 2022. "Structural basis for Sarbecovirus ORF6 mediated blockage of nucleocytoplasmic transport," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    9. Manon Venet & Margarida Sa Ribeiro & Elodie Décembre & Alicia Bellomo & Garima Joshi & Célia Nuovo & Marine Villard & David Cluet & Magali Perret & Rémi Pescamona & Helena Paidassi & Thierry Walzer & , 2023. "Severe COVID-19 patients have impaired plasmacytoid dendritic cell-mediated control of SARS-CoV-2," Nature Communications, Nature, vol. 14(1), pages 1-21, December.
    10. Xin Pan & Lan Wang & Juntang Yang & Yingge Li & Min Xu & Chenxi Liang & Lulu Liu & Zhongzheng Li & Cong Xia & Jiaojiao Pang & Mengyuan Wang & Meng Li & Saiya Guo & Peishuo Yan & Chen Ding & Ivan O. Ro, 2024. "TRβ activation confers AT2-to-AT1 cell differentiation and anti-fibrosis during lung repair via KLF2 and CEBPA," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    11. Thomas Kruse & Caroline Benz & Dimitriya H. Garvanska & Richard Lindqvist & Filip Mihalic & Fabian Coscia & Raviteja Inturi & Ahmed Sayadi & Leandro Simonetti & Emma Nilsson & Muhammad Ali & Johanna K, 2021. "Large scale discovery of coronavirus-host factor protein interaction motifs reveals SARS-CoV-2 specific mechanisms and vulnerabilities," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    12. Linliang Zhang & Hongyun Wang & Chao Han & Qi Dong & Jie Yan & Weiwei Guo & Chao Shan & Wen Zhao & Pu Chen & Rui Huang & Ying Wu & Yu Chen & Yali Qin & Mingzhou Chen, 2024. "AMFR-mediated Flavivirus NS2A ubiquitination subverts ER-phagy to augment viral pathogenicity," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    13. Erik Duijvelaar & Jack Gisby & James E. Peters & Harm Jan Bogaard & Jurjan Aman, 2024. "Longitudinal plasma proteomics reveals biomarkers of alveolar-capillary barrier disruption in critically ill COVID-19 patients," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    14. Valter Bergant & Daniel Schnepf & Niklas Andrade Krätzig & Philipp Hubel & Christian Urban & Thomas Engleitner & Ronald Dijkman & Bernhard Ryffel & Katja Steiger & Percy A. Knolle & Georg Kochs & Rola, 2023. "mRNA 3’UTR lengthening by alternative polyadenylation attenuates inflammatory responses and correlates with virulence of Influenza A virus," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    15. Maritza Puray-Chavez & Jenna E. Eschbach & Ming Xia & Kyle M. LaPak & Qianzi Zhou & Ria Jasuja & Jiehong Pan & Jian Xu & Zixiang Zhou & Shawn Mohammed & Qibo Wang & Dana Q. Lawson & Sanja Djokic & Gao, 2024. "A basally active cGAS-STING pathway limits SARS-CoV-2 replication in a subset of ACE2 positive airway cell models," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
    16. Solène Denolly & Alexey Stukalov & Uladzimir Barayeu & Alina N. Rosinski & Paraskevi Kritsiligkou & Sebastian Joecks & Tobias P. Dick & Andreas Pichlmair & Ralf Bartenschlager, 2023. "Zika virus remodelled ER membranes contain proviral factors involved in redox and methylation pathways," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    17. Marziah Hashimi & T. Andrew Sebrell & Jodi F. Hedges & Deann Snyder & Katrina N. Lyon & Stephanie D. Byrum & Samuel G. Mackintosh & Dan Crowley & Michelle D. Cherne & David Skwarchuk & Amanda Robison , 2023. "Antiviral responses in a Jamaican fruit bat intestinal organoid model of SARS-CoV-2 infection," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    18. Laura Heydemann & Małgorzata Ciurkiewicz & Georg Beythien & Kathrin Becker & Klaus Schughart & Stephanie Stanelle-Bertram & Berfin Schaumburg & Nancy Mounogou-Kouassi & Sebastian Beck & Martin Zickler, 2023. "Hamster model for post-COVID-19 alveolar regeneration offers an opportunity to understand post-acute sequelae of SARS-CoV-2," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    19. Haris Babačić & Wanda Christ & José Eduardo Araújo & Georgios Mermelekas & Nidhi Sharma & Janne Tynell & Marina García & Renata Varnaite & Hilmir Asgeirsson & Hedvig Glans & Janne Lehtiö & Sara Gredma, 2023. "Comprehensive proteomics and meta-analysis of COVID-19 host response," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    20. Ma’ayan Israeli & Yaara Finkel & Yfat Yahalom-Ronen & Nir Paran & Theodor Chitlaru & Ofir Israeli & Inbar Cohen-Gihon & Moshe Aftalion & Reut Falach & Shahar Rotem & Uri Elia & Ital Nemet & Limor Klik, 2022. "Genome-wide CRISPR screens identify GATA6 as a proviral host factor for SARS-CoV-2 via modulation of ACE2," Nature Communications, Nature, vol. 13(1), pages 1-16, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-54762-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.