IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v561y2018i7722d10.1038_s41586-018-0484-5.html
   My bibliography  Save this article

An orthogonal proteomic survey uncovers novel Zika virus host factors

Author

Listed:
  • Pietro Scaturro

    (Max-Planck Institute of Biochemistry, Innate Immunity Laboratory
    Institute of Virology)

  • Alexey Stukalov

    (Max-Planck Institute of Biochemistry, Innate Immunity Laboratory
    Institute of Virology)

  • Darya A. Haas

    (Max-Planck Institute of Biochemistry, Innate Immunity Laboratory)

  • Mirko Cortese

    (University of Heidelberg)

  • Kalina Draganova

    (Helmholtz Center Munich
    Ludwig-Maximilians-Universitaet)

  • Anna Płaszczyca

    (University of Heidelberg)

  • Ralf Bartenschlager

    (University of Heidelberg
    Heidelberg partner site)

  • Magdalena Götz

    (Helmholtz Center Munich
    Ludwig-Maximilians-Universitaet
    Ludwig-Maximilians-Universitaet)

  • Andreas Pichlmair

    (Max-Planck Institute of Biochemistry, Innate Immunity Laboratory
    Institute of Virology
    Munich partner site)

Abstract

Zika virus (ZIKV) has recently emerged as a global health concern owing to its widespread diffusion and its association with severe neurological symptoms and microcephaly in newborns1. However, the molecular mechanisms that are responsible for the pathogenicity of ZIKV remain largely unknown. Here we use human neural progenitor cells and the neuronal cell line SK-N-BE2 in an integrated proteomics approach to characterize the cellular responses to viral infection at the proteome and phosphoproteome level, and use affinity proteomics to identify cellular targets of ZIKV proteins. Using this approach, we identify 386 ZIKV-interacting proteins, ZIKV-specific and pan-flaviviral activities as well as host factors with known functions in neuronal development, retinal defects and infertility. Moreover, our analysis identified 1,216 phosphorylation sites that are specifically up- or downregulated after ZIKV infection, indicating profound modulation of fundamental signalling pathways such as AKT, MAPK–ERK and ATM–ATR and thereby providing mechanistic insights into the proliferation arrest elicited by ZIKV infection. Functionally, our integrative study identifies ZIKV host-dependency factors and provides a comprehensive framework for a system-level understanding of ZIKV-induced perturbations at the levels of proteins and cellular pathways.

Suggested Citation

  • Pietro Scaturro & Alexey Stukalov & Darya A. Haas & Mirko Cortese & Kalina Draganova & Anna Płaszczyca & Ralf Bartenschlager & Magdalena Götz & Andreas Pichlmair, 2018. "An orthogonal proteomic survey uncovers novel Zika virus host factors," Nature, Nature, vol. 561(7722), pages 253-257, September.
  • Handle: RePEc:nat:nature:v:561:y:2018:i:7722:d:10.1038_s41586-018-0484-5
    DOI: 10.1038/s41586-018-0484-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-018-0484-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-018-0484-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yiqi Huang & Valter Bergant & Vincent Grass & Quirin Emslander & M. Sabri Hamad & Philipp Hubel & Julia Mergner & Antonio Piras & Karsten Krey & Alexander Henrici & Rupert Öllinger & Yonas M. Tesfamar, 2024. "Multi-omics characterization of the monkeypox virus infection," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    2. Friederike L. Pennemann & Assel Mussabekova & Christian Urban & Alexey Stukalov & Line Lykke Andersen & Vincent Grass & Teresa Maria Lavacca & Cathleen Holze & Lila Oubraham & Yasmine Benamrouche & En, 2021. "Cross-species analysis of viral nucleic acid interacting proteins identifies TAOKs as innate immune regulators," Nature Communications, Nature, vol. 12(1), pages 1-22, December.
    3. Valter Bergant & Daniel Schnepf & Niklas Andrade Krätzig & Philipp Hubel & Christian Urban & Thomas Engleitner & Ronald Dijkman & Bernhard Ryffel & Katja Steiger & Percy A. Knolle & Georg Kochs & Rola, 2023. "mRNA 3’UTR lengthening by alternative polyadenylation attenuates inflammatory responses and correlates with virulence of Influenza A virus," Nature Communications, Nature, vol. 14(1), pages 1-17, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:561:y:2018:i:7722:d:10.1038_s41586-018-0484-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.