IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-47900-6.html
   My bibliography  Save this article

HBO1 catalyzes lysine lactylation and mediates histone H3K9la to regulate gene transcription

Author

Listed:
  • Ziping Niu

    (School of Basic Medical Sciences, Tianjin Medical University)

  • Chen Chen

    (School of Basic Medical Sciences, Tianjin Medical University)

  • Siyu Wang

    (School of Basic Medical Sciences, Tianjin Medical University)

  • Congcong Lu

    (College of Life Sciences, Nankai University)

  • Zhiyue Wu

    (School of Basic Medical Sciences, Tianjin Medical University)

  • Aiyuan Wang

    (School of Basic Medical Sciences, Tianjin Medical University)

  • Jing Mo

    (Tianjin Medical University)

  • Jianji Zhang

    (School of Basic Medical Sciences, Tianjin Medical University)

  • Yanpu Han

    (School of Basic Medical Sciences, Tianjin Medical University)

  • Ye Yuan

    (School of Basic Medical Sciences, Tianjin Medical University)

  • Yingao Zhang

    (School of Basic Medical Sciences, Tianjin Medical University)

  • Yong Zang

    (School of Basic Medical Sciences, Tianjin Medical University)

  • Chaoran He

    (School of Basic Medical Sciences, Tianjin Medical University)

  • Xue Bai

    (School of Basic Medical Sciences, Tianjin Medical University)

  • Shanshan Tian

    (School of Basic Medical Sciences, Tianjin Medical University)

  • Guijin Zhai

    (School of Basic Medical Sciences, Tianjin Medical University)

  • Xudong Wu

    (School of Basic Medical Sciences, Tianjin Medical University)

  • Kai Zhang

    (School of Basic Medical Sciences, Tianjin Medical University
    Tianjin Medical University Eye Hospital, Tianjin Medical University)

Abstract

Lysine lactylation (Kla) links metabolism and gene regulation and plays a key role in multiple biological processes. However, the regulatory mechanism and functional consequence of Kla remain to be explored. Here, we report that HBO1 functions as a lysine lactyltransferase to regulate transcription. We show that HBO1 catalyzes the addition of Kla in vitro and intracellularly, and E508 is a key site for the lactyltransferase activity of HBO1. Quantitative proteomic analysis further reveals 95 endogenous Kla sites targeted by HBO1, with the majority located on histones. Using site-specific antibodies, we find that HBO1 may preferentially catalyze histone H3K9la and scaffold proteins including JADE1 and BRPF2 can promote the enzymatic activity for histone Kla. Notably, CUT&Tag assays demonstrate that HBO1 is required for histone H3K9la on transcription start sites (TSSs). Besides, the regulated Kla can promote key signaling pathways and tumorigenesis, which is further supported by evaluating the malignant behaviors of HBO1- knockout (KO) tumor cells, as well as the level of histone H3K9la in clinical tissues. Our study reveals HBO1 serves as a lactyltransferase to mediate a histone Kla-dependent gene transcription.

Suggested Citation

  • Ziping Niu & Chen Chen & Siyu Wang & Congcong Lu & Zhiyue Wu & Aiyuan Wang & Jing Mo & Jianji Zhang & Yanpu Han & Ye Yuan & Yingao Zhang & Yong Zang & Chaoran He & Xue Bai & Shanshan Tian & Guijin Zha, 2024. "HBO1 catalyzes lysine lactylation and mediates histone H3K9la to regulate gene transcription," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-47900-6
    DOI: 10.1038/s41467-024-47900-6
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-47900-6
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-47900-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Di Zhang & Zhanyun Tang & He Huang & Guolin Zhou & Chang Cui & Yejing Weng & Wenchao Liu & Sunjoo Kim & Sangkyu Lee & Mathew Perez-Neut & Jun Ding & Daniel Czyz & Rong Hu & Zhen Ye & Maomao He & Y. Ge, 2019. "Metabolic regulation of gene expression by histone lactylation," Nature, Nature, vol. 574(7779), pages 575-580, October.
    2. Luke T. Izzo & Kathryn E. Wellen, 2019. "Histone lactylation links metabolism and gene regulation," Nature, Nature, vol. 574(7779), pages 492-493, October.
    3. Esther Ortega & Srinivasan Rengachari & Ziad Ibrahim & Naghmeh Hoghoughi & Jonathan Gaucher & Alex S. Holehouse & Saadi Khochbin & Daniel Panne, 2018. "Transcription factor dimerization activates the p300 acetyltransferase," Nature, Nature, vol. 562(7728), pages 538-544, October.
    4. Laura MacPherson & Juliana Anokye & Miriam M. Yeung & Enid Y. N. Lam & Yih-Chih Chan & Chen-Fang Weng & Paul Yeh & Kathy Knezevic & Miriam S. Butler & Annabelle Hoegl & Kah-Lok Chan & Marian L. Burr &, 2020. "HBO1 is required for the maintenance of leukaemia stem cells," Nature, Nature, vol. 577(7789), pages 266-270, January.
    5. Yugang Wang & Yusong R. Guo & Ke Liu & Zheng Yin & Rui Liu & Yan Xia & Lin Tan & Peiying Yang & Jong-Ho Lee & Xin-jian Li & David Hawke & Yanhua Zheng & Xu Qian & Jianxin Lyu & Jie He & Dongming Xing , 2017. "KAT2A coupled with the α-KGDH complex acts as a histone H3 succinyltransferase," Nature, Nature, vol. 552(7684), pages 273-277, December.
    6. Johayra Simithy & Simone Sidoli & Zuo-Fei Yuan & Mariel Coradin & Natarajan V. Bhanu & Dylan M. Marchione & Brianna J. Klein & Gleb A. Bazilevsky & Cheryl E. McCullough & Robert S. Magin & Tatiana G. , 2017. "Characterization of histone acylations links chromatin modifications with metabolism," Nature Communications, Nature, vol. 8(1), pages 1-13, December.
    7. Hanyang Dong & Jianji Zhang & Hui Zhang & Yue Han & Congcong Lu & Chen Chen & Xiaoxia Tan & Siyu Wang & Xue Bai & Guijin Zhai & Shanshan Tian & Tao Zhang & Zhongyi Cheng & Enmin Li & Liyan Xu & Kai Zh, 2022. "YiaC and CobB regulate lysine lactylation in Escherichia coli," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tianshi Feng & Xuemei Zhao & Ping Gu & Wah Yang & Cunchuan Wang & Qingyu Guo & Qiaoyun Long & Qing Liu & Ying Cheng & Jin Li & Cynthia Kwan Yui Cheung & Donghai Wu & Xinyu Kong & Yong Xu & Dewei Ye & , 2022. "Adipocyte-derived lactate is a signalling metabolite that potentiates adipose macrophage inflammation via targeting PHD2," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    2. Marlies Cortés & Agnese Brischetto & M. C. Martinez-Campanario & Chiara Ninfali & Verónica Domínguez & Sara Fernández & Raquel Celis & Anna Esteve-Codina & Juan J. Lozano & Julia Sidorova & Gloria Gar, 2023. "Inflammatory macrophages reprogram to immunosuppression by reducing mitochondrial translation," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    3. Hanyang Dong & Jianji Zhang & Hui Zhang & Yue Han & Congcong Lu & Chen Chen & Xiaoxia Tan & Siyu Wang & Xue Bai & Guijin Zhai & Shanshan Tian & Tao Zhang & Zhongyi Cheng & Enmin Li & Liyan Xu & Kai Zh, 2022. "YiaC and CobB regulate lysine lactylation in Escherichia coli," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    4. Fadi J. Najm & Peter DeWeirdt & Molly M. Moore & Samantha M. Bevill & Chadi A. El Farran & Kevin A. Macias & Mudra Hegde & Amanda L. Waterbury & Brian B. Liau & Peter Galen & John G. Doench & Bradley , 2023. "Chromatin complex dependencies reveal targeting opportunities in leukemia," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    5. Di Yu & Yingying Liang & Claudia Kim & Anbalagan Jaganathan & Donglei Ji & Xinye Han & Xuelan Yang & Yanjie Jia & Ruirui Gu & Chunyu Wang & Qiang Zhang & Ka Lung Cheung & Ming-Ming Zhou & Lei Zeng, 2023. "Structural mechanism of BRD4-NUT and p300 bipartite interaction in propagating aberrant gene transcription in chromatin in NUT carcinoma," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    6. Lianhui Sun & Yuan Zhang & Boyu Yang & Sijun Sun & Pengshan Zhang & Zai Luo & Tingting Feng & Zelin Cui & Ting Zhu & Yuming Li & Zhengjun Qiu & Guangjian Fan & Chen Huang, 2023. "Lactylation of METTL16 promotes cuproptosis via m6A-modification on FDX1 mRNA in gastric cancer," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    7. Yusuke Nasu & Abhi Aggarwal & Giang N. T. Le & Camilla Trang Vo & Yuki Kambe & Xinxing Wang & Felix R. M. Beinlich & Ashley Bomin Lee & Tina R. Ram & Fangying Wang & Kelsea A. Gorzo & Yuki Kamijo & Ma, 2023. "Lactate biosensors for spectrally and spatially multiplexed fluorescence imaging," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    8. Zhenzhen Chen & Qiankun He & Tiankun Lu & Jiayi Wu & Gaoli Shi & Luyun He & Hong Zong & Benyu Liu & Pingping Zhu, 2023. "mcPGK1-dependent mitochondrial import of PGK1 promotes metabolic reprogramming and self-renewal of liver TICs," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    9. Mandy S. M. Wan & Reyhan Muhammad & Marios G. Koliopoulos & Theodoros I. Roumeliotis & Jyoti S. Choudhary & Claudio Alfieri, 2023. "Mechanism of assembly, activation and lysine selection by the SIN3B histone deacetylase complex," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    10. Ziad Ibrahim & Tao Wang & Olivier Destaing & Nicola Salvi & Naghmeh Hoghoughi & Clovis Chabert & Alexandra Rusu & Jinjun Gao & Leonardo Feletto & Nicolas Reynoird & Thomas Schalch & Yingming Zhao & Ma, 2022. "Structural insights into p300 regulation and acetylation-dependent genome organisation," Nature Communications, Nature, vol. 13(1), pages 1-23, December.
    11. Yosuke Komata & Akinori Kanai & Takahiro Maeda & Toshiya Inaba & Akihiko Yokoyama, 2023. "MOZ/ENL complex is a recruiting factor of leukemic AF10 fusion proteins," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    12. Han Wang & Huiying Sun & Bilin Liang & Fang Zhang & Fan Yang & Bowen Cui & Lixia Ding & Xiang Wang & Ronghua Wang & Jiaoyang Cai & Yanjing Tang & Jianan Rao & Wenting Hu & Shuang Zhao & Wenyan Wu & Xi, 2023. "Chromatin accessibility landscape of relapsed pediatric B-lineage acute lymphoblastic leukemia," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    13. Shan Yao & Min-Dong Xu & Ying Wang & Shen-Ting Zhao & Jin Wang & Gui-Fu Chen & Wen-Bing Chen & Jian Liu & Guo-Bin Huang & Wen-Juan Sun & Yan-Yan Zhang & Huan-Li Hou & Lei Li & Xiang-Dong Sun, 2023. "Astrocytic lactate dehydrogenase A regulates neuronal excitability and depressive-like behaviors through lactate homeostasis in mice," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    14. Markus M. Rinschen & Oleg Palygin & Ashraf El-Meanawy & Xavier Domingo-Almenara & Amelia Palermo & Lashodya V. Dissanayake & Daria Golosova & Michael A. Schafroth & Carlos Guijas & Fatih Demir & Johan, 2022. "Accelerated lysine metabolism conveys kidney protection in salt-sensitive hypertension," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    15. Fjodor Merkuri & Megan Rothstein & Marcos Simoes-Costa, 2024. "Histone lactylation couples cellular metabolism with developmental gene regulatory networks," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    16. Chi Zhou & Wenxin Li & Zhenxing Liang & Xianrui Wu & Sijing Cheng & Jianhong Peng & Kaixuan Zeng & Weihao Li & Ping Lan & Xin Yang & Li Xiong & Ziwei Zeng & Xiaobin Zheng & Liang Huang & Wenhua Fan & , 2024. "Mutant KRAS-activated circATXN7 fosters tumor immunoescape by sensitizing tumor-specific T cells to activation-induced cell death," Nature Communications, Nature, vol. 15(1), pages 1-21, December.
    17. Masaki Kikuchi & Satoshi Morita & Masatoshi Wakamori & Shin Sato & Tomomi Uchikubo-Kamo & Takehiro Suzuki & Naoshi Dohmae & Mikako Shirouzu & Takashi Umehara, 2023. "Epigenetic mechanisms to propagate histone acetylation by p300/CBP," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    18. Jayme L. Dahlin & Bruce K. Hua & Beth E. Zucconi & Shawn D. Nelson & Shantanu Singh & Anne E. Carpenter & Jonathan H. Shrimp & Evelyne Lima-Fernandes & Mathias J. Wawer & Lawrence P. W. Chung & Ayushi, 2023. "Reference compounds for characterizing cellular injury in high-content cellular morphology assays," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    19. Zhou Huang & Hejun Liu & Jay Nix & Rui Xu & Catherine R. Knoverek & Gregory R. Bowman & Gaya K. Amarasinghe & L. David Sibley, 2022. "The intrinsically disordered protein TgIST from Toxoplasma gondii inhibits STAT1 signaling by blocking cofactor recruitment," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    20. Bo Yu & Jun Su & Qiqi Shi & Qing Liu & Jun Ma & Guoqing Ru & Lei Zhang & Jian Zhang & Xichun Hu & Jianming Tang, 2022. "KMT5A-methylated SNIP1 promotes triple-negative breast cancer metastasis by activating YAP signaling," Nature Communications, Nature, vol. 13(1), pages 1-18, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-47900-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.