Mechanism of silk processing in insects and spiders
Author
Abstract
Suggested Citation
DOI: 10.1038/nature01809
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- D. Eliaz & S. Paul & D. Benyamin & A. Cernescu & S. R. Cohen & I. Rosenhek-Goldian & O. Brookstein & M. E. Miali & A. Solomonov & M. Greenblatt & Y. Levy & U. Raviv & A. Barth & U. Shimanovich, 2022. "Micro and nano-scale compartments guide the structural transition of silk protein monomers into silk fibers," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
- Wenbo Hu & Anqiang Jia & Sanyuan Ma & Guoqing Zhang & Zhaoyuan Wei & Fang Lu & Yongjiang Luo & Zhisheng Zhang & Jiahe Sun & Tianfang Yang & TingTing Xia & Qinhui Li & Ting Yao & Jiangyu Zheng & Zijie , 2023. "A molecular atlas reveals the tri-sectional spinning mechanism of spider dragline silk," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
- Chenchen Wu & Yu Duan & Lintao Yu & Yao Hu & Chenxi Zhao & Chunwang Ji & Xiangdong Guo & Shu Zhang & Xiaokang Dai & Puyi Ma & Qian Wang & Shengjie Ling & Xiaoxia Yang & Qing Dai, 2024. "In-situ observation of silk nanofibril assembly via graphene plasmonic infrared sensor," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
- Tina Arndt & Kristaps Jaudzems & Olga Shilkova & Juanita Francis & Mathias Johansson & Peter R. Laity & Cagla Sahin & Urmimala Chatterjee & Nina Kronqvist & Edgar Barajas-Ledesma & Rakesh Kumar & Gefe, 2022. "Spidroin N-terminal domain forms amyloid-like fibril based hydrogels and provides a protein immobilization platform," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
- Ke Wang & Qian Ma & Xiao Qin & Shu Dong Wang, 2018. "Silk Fibroin and its Application in Tissue Engineering," Current Trends in Fashion Technology & Textile Engineering, Juniper Publishers Inc., vol. 4(4), pages 74-76, November.
- Xuedong Chen & Yongfeng Wang & Yujun Wang & Qiuying Li & Xinyin Liang & Guang Wang & Jianglan Li & Ruji Peng & Yanghu Sima & Shiqing Xu, 2022. "Ectopic expression of sericin enables efficient production of ancient silk with structural changes in silkworm," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
- Jianming Chen & Arata Tsuchida & Ali D. Malay & Kousuke Tsuchiya & Hiroyasu Masunaga & Yui Tsuji & Mako Kuzumoto & Kenji Urayama & Hirofumi Shintaku & Keiji Numata, 2024. "Replicating shear-mediated self-assembly of spider silk through microfluidics," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
- Ori Brookstein & Eyal Shimoni & Dror Eliaz & Ifat Kaplan-Ashiri & Itay Carmel & Ulyana Shimanovich, 2024. "Metal ions guide the production of silkworm silk fibers," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:424:y:2003:i:6952:d:10.1038_nature01809. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.