IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-54550-1.html
   My bibliography  Save this article

Estimation of multicomponent reactions’ yields from networks of mechanistic steps

Author

Listed:
  • Sara Szymkuć

    (Inc.)

  • Agnieszka Wołos

    (Inc.
    Polish Academy of Sciences)

  • Rafał Roszak

    (Inc.
    Polish Academy of Sciences)

  • Bartosz A. Grzybowski

    (Polish Academy of Sciences
    Institute for Basic Science (IBS)
    UNIST)

Abstract

This work describes estimation of yields of complex, multicomponent reactions (MCRs) based on the modeled networks of mechanistic steps spanning both the main reaction pathway as well as immediate and downstream side reactions. Because experimental values of the kinetic rate constants for individual mechanistic transforms are extremely sparse, these constants are approximated here using Mayr’s nucleophilicity and electrophilicity parameters fine-tuned by correction terms grounded in linear free-energy relationships. With this formalism, the model trained on the mechanistic networks of only 20 – but mechanistically- and yield-diverse MCRs – transfers well to newly discovered MCRs that are based on markedly different mechanisms and types of individual mechanistic transforms. These results suggest that mechanistic-level approach to yield estimation may be a useful alternative to models that are derived from full-reaction data and lack information about yield-lowering side reactions.

Suggested Citation

  • Sara Szymkuć & Agnieszka Wołos & Rafał Roszak & Bartosz A. Grzybowski, 2024. "Estimation of multicomponent reactions’ yields from networks of mechanistic steps," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-54550-1
    DOI: 10.1038/s41467-024-54550-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-54550-1
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-54550-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-54550-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.