IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-54611-5.html
   My bibliography  Save this article

Systematic, computational discovery of multicomponent and one-pot reactions

Author

Listed:
  • Rafał Roszak

    (Allchemy Inc.)

  • Louis Gadina

    (Polish Academy of Sciences
    Institute for Basic Science (IBS))

  • Agnieszka Wołos

    (Allchemy Inc.)

  • Ahmad Makkawi

    (Polish Academy of Sciences)

  • Barbara Mikulak-Klucznik

    (Allchemy Inc.)

  • Yasemin Bilgi

    (Polish Academy of Sciences
    Institute for Basic Science (IBS))

  • Karol Molga

    (Allchemy Inc.
    Polish Academy of Sciences)

  • Patrycja Gołębiowska

    (Polish Academy of Sciences)

  • Oskar Popik

    (Polish Academy of Sciences)

  • Tomasz Klucznik

    (Allchemy Inc.)

  • Sara Szymkuć

    (Allchemy Inc.)

  • Martyna Moskal

    (Allchemy Inc.)

  • Sebastian Baś

    (Polish Academy of Sciences
    Jagiellonian University)

  • Rafał Frydrych

    (Polish Academy of Sciences
    Institute for Basic Science (IBS))

  • Jacek Mlynarski

    (Polish Academy of Sciences)

  • Olena Vakuliuk

    (Polish Academy of Sciences)

  • Daniel T. Gryko

    (Polish Academy of Sciences)

  • Bartosz A. Grzybowski

    (Polish Academy of Sciences
    Institute for Basic Science (IBS)
    UNIST)

Abstract

Discovery of new types of reactions is essential to organic chemistry because it expands the scope of accessible molecular scaffolds and can enable more economical syntheses of existing structures. In this context, the so-called multicomponent reactions, MCRs, are of particular interest because they can build complex scaffolds from multiple starting materials in just one step, without purification of intermediates. However, for over a century of active research, MCRs have been discovered rather than designed, and their number remains limited to only several hundred. This work demonstrates that computers taught the essential knowledge of reaction mechanisms and rules of physical-organic chemistry can design – completely autonomously and in large numbers – mechanistically distinct MCRs. Moreover, when supplemented by models to approximate kinetic rates, the algorithm can predict reaction yields and identify reactions that have potential for organocatalysis. These predictions are validated by experiments spanning different modes of reactivity and diverse product scaffolds.

Suggested Citation

  • Rafał Roszak & Louis Gadina & Agnieszka Wołos & Ahmad Makkawi & Barbara Mikulak-Klucznik & Yasemin Bilgi & Karol Molga & Patrycja Gołębiowska & Oskar Popik & Tomasz Klucznik & Sara Szymkuć & Martyna M, 2024. "Systematic, computational discovery of multicomponent and one-pot reactions," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-54611-5
    DOI: 10.1038/s41467-024-54611-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-54611-5
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-54611-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Sara Szymkuć & Agnieszka Wołos & Rafał Roszak & Bartosz A. Grzybowski, 2024. "Estimation of multicomponent reactions’ yields from networks of mechanistic steps," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    2. Barbara Mikulak-Klucznik & Patrycja Gołębiowska & Alison A. Bayly & Oskar Popik & Tomasz Klucznik & Sara Szymkuć & Ewa P. Gajewska & Piotr Dittwald & Olga Staszewska-Krajewska & Wiktor Beker & Tomasz , 2020. "Computational planning of the synthesis of complex natural products," Nature, Nature, vol. 588(7836), pages 83-88, December.
    3. Tomasz Klucznik & Leonidas-Dimitrios Syntrivanis & Sebastian Baś & Barbara Mikulak-Klucznik & Martyna Moskal & Sara Szymkuć & Jacek Mlynarski & Louis Gadina & Wiktor Beker & Martin D. Burke & Konrad T, 2024. "Computational prediction of complex cationic rearrangement outcomes," Nature, Nature, vol. 625(7995), pages 508-515, January.
    4. Sean H. Kennedy & Balu D. Dherange & Kathleen J. Berger & Mark D. Levin, 2021. "Skeletal editing through direct nitrogen deletion of secondary amines," Nature, Nature, vol. 593(7858), pages 223-227, May.
    5. Jose B. Roque & Yusuke Kuroda & Lucas T. Göttemann & Richmond Sarpong, 2018. "Deconstructive diversification of cyclic amines," Nature, Nature, vol. 564(7735), pages 244-248, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sara Szymkuć & Agnieszka Wołos & Rafał Roszak & Bartosz A. Grzybowski, 2024. "Estimation of multicomponent reactions’ yields from networks of mechanistic steps," Nature Communications, Nature, vol. 15(1), pages 1-12, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sara Szymkuć & Agnieszka Wołos & Rafał Roszak & Bartosz A. Grzybowski, 2024. "Estimation of multicomponent reactions’ yields from networks of mechanistic steps," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    2. Haitao Qin & Ting Guo & Ken Lin & Guigen Li & Hongjian Lu, 2023. "Synthesis of dienes from pyrrolidines using skeletal modification," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    3. Shaopeng Liu & Yong Yang & Qingmin Song & Zhaohong Liu & Paramasivam Sivaguru & Yifan Zhang & Graham Ruiter & Edward A. Anderson & Xihe Bi, 2024. "Halogencarbene-free Ciamician-Dennstedt single-atom skeletal editing," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    4. Hong Lu & Yu Zhang & Xiu-Hong Wang & Ran Zhang & Peng-Fei Xu & Hao Wei, 2024. "Carbon–nitrogen transmutation in polycyclic arenol skeletons to access N-heteroarenes," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    5. Qixue Qin & Liang Zhang & Jialiang Wei & Xu Qiu & Shuanghong Hao & Xiao-De An & Ning Jiao, 2024. "Direct oxygen insertion into C-C bond of styrenes with air," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    6. Hanah Na & Liviu M. Mirica, 2022. "Deciphering the mechanism of the Ni-photocatalyzed C‒O cross-coupling reaction using a tridentate pyridinophane ligand," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    7. Wenhao Gao & Priyanka Raghavan & Connor W. Coley, 2022. "Autonomous platforms for data-driven organic synthesis," Nature Communications, Nature, vol. 13(1), pages 1-4, December.
    8. Tian Li & Shan Jiang & Yuanhao Dai & Xia Wu & Huihui Guo & Liang Shi & Xueli Sang & Li Ren & Jie Wang & Lili Shi & Wenming Zhou & Houhua Li & Hong-Dong Hao, 2024. "Total synthesis and target identification of marine cyclopiane diterpenes," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    9. Itai Levin & Mengjie Liu & Christopher A. Voigt & Connor W. Coley, 2022. "Merging enzymatic and synthetic chemistry with computational synthesis planning," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    10. Ruining Li & Ya Dong & Shah Nawaz Khan & Muhammad Kashif Zaman & Junliang Zhou & Pannan Miao & Lifu Hu & Zhankui Sun, 2022. "Decarboxylative oxidation-enabled consecutive C-C bond cleavage," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    11. Umit V. Ucak & Islambek Ashyrmamatov & Junsu Ko & Juyong Lee, 2022. "Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    12. Yu Shee & Haote Li & Pengpeng Zhang & Andrea M. Nikolic & Wenxin Lu & H. Ray Kelly & Vidhyadhar Manee & Sanil Sreekumar & Frederic G. Buono & Jinhua J. Song & Timothy R. Newhouse & Victor S. Batista, 2024. "Site-specific template generative approach for retrosynthetic planning," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    13. Yu Wang & Chao Pang & Yuzhe Wang & Junru Jin & Jingjie Zhang & Xiangxiang Zeng & Ran Su & Quan Zou & Leyi Wei, 2023. "Retrosynthesis prediction with an interpretable deep-learning framework based on molecular assembly tasks," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    14. Weihe Zhong & Ziduo Yang & Calvin Yu-Chian Chen, 2023. "Retrosynthesis prediction using an end-to-end graph generative architecture for molecular graph editing," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    15. Hongyu Zhong & Dominic T. Egger & Valentina C. M. Gasser & Patrick Finkelstein & Loris Keim & Merlin Z. Seidel & Nils Trapp & Bill Morandi, 2023. "Skeletal metalation of lactams through a carbonyl-to-nickel-exchange logic," Nature Communications, Nature, vol. 14(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-54611-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.