Reaction performance prediction with an extrapolative and interpretable graph model based on chemical knowledge
Author
Abstract
Suggested Citation
DOI: 10.1038/s41467-023-39283-x
Download full text from publisher
References listed on IDEAS
- Giorgio Pesciullesi & Philippe Schwaller & Teodoro Laino & Jean-Louis Reymond, 2020. "Transfer learning enables the molecular transformer to predict regio- and stereoselective reactions on carbohydrates," Nature Communications, Nature, vol. 11(1), pages 1-8, December.
- K. N. Houk & Paul Ha-Yeon Cheong, 2008. "Computational prediction of small-molecule catalysts," Nature, Nature, vol. 455(7211), pages 309-313, September.
- Jolene P. Reid & Matthew S. Sigman, 2019. "Holistic prediction of enantioselectivity in asymmetric catalysis," Nature, Nature, vol. 571(7765), pages 343-348, July.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Zi-Lin Li & Shuxin Pei & Ziying Chen & Teng-Yu Huang & Xu-Dong Wang & Lin Shen & Xuebo Chen & Qi-Qiang Wang & De-Xian Wang & Yu-Fei Ao, 2024. "Machine learning-assisted amidase-catalytic enantioselectivity prediction and rational design of variants for improving enantioselectivity," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
- Wenjing Nie & Qiongqiong Wan & Jian Sun & Moran Chen & Ming Gao & Suming Chen, 2023. "Ultra-high-throughput mapping of the chemical space of asymmetric catalysis enables accelerated reaction discovery," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
- Xiaoqian Wang & Yang Huang & Xiaoyu Xie & Yan Liu & Ziyu Huo & Maverick Lin & Hongliang Xin & Rong Tong, 2023. "Bayesian-optimization-assisted discovery of stereoselective aluminum complexes for ring-opening polymerization of racemic lactide," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
- Shingo Harada & Hiroki Takenaka & Tsubasa Ito & Haruki Kanda & Tetsuhiro Nemoto, 2024. "Valence-isomer selective cycloaddition reaction of cycloheptatrienes-norcaradienes," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
- Zi-Jing Zhang & Shu-Wen Li & João C. A. Oliveira & Yanjun Li & Xinran Chen & Shuo-Qing Zhang & Li-Cheng Xu & Torben Rogge & Xin Hong & Lutz Ackermann, 2023. "Data-driven design of new chiral carboxylic acid for construction of indoles with C-central and C–N axial chirality via cobalt catalysis," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
- Daniel Probst & Matteo Manica & Yves Gaetan Nana Teukam & Alessandro Castrogiovanni & Federico Paratore & Teodoro Laino, 2022. "Biocatalysed synthesis planning using data-driven learning," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
- Jie Ding & Runping Ye & Yanghe Fu & Yiming He & Ye Wu & Yulong Zhang & Qin Zhong & Harold H. Kung & Maohong Fan, 2023. "Direct synthesis of urea from carbon dioxide and ammonia," Nature Communications, Nature, vol. 14(1), pages 1-4, December.
- Min Li & Yang Zhou & Zexing Wen & Qian Ni & Ziqin Zhou & Yiling Liu & Qiang Zhou & Zongchao Jia & Bin Guo & Yuanhong Ma & Bo Chen & Zhi-Min Zhang & Jian-bo Wang, 2024. "An efficient C-glycoside production platform enabled by rationally tuning the chemoselectivity of glycosyltransferases," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
- Diandra S. Hassan & Christian Wolf, 2021. "Optical deciphering of multinary chiral compound mixtures through organic reaction based chemometric chirality sensing," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
- Umit V. Ucak & Islambek Ashyrmamatov & Junsu Ko & Juyong Lee, 2022. "Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
- Shuangjia Zheng & Tao Zeng & Chengtao Li & Binghong Chen & Connor W. Coley & Yuedong Yang & Ruibo Wu, 2022. "Deep learning driven biosynthetic pathways navigation for natural products with BioNavi-NP," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-39283-x. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.