IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-53048-0.html
   My bibliography  Save this article

Machine learning-assisted amidase-catalytic enantioselectivity prediction and rational design of variants for improving enantioselectivity

Author

Listed:
  • Zi-Lin Li

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Shuxin Pei

    (Beijing Normal University)

  • Ziying Chen

    (Beijing Normal University)

  • Teng-Yu Huang

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Xu-Dong Wang

    (Chinese Academy of Sciences)

  • Lin Shen

    (Beijing Normal University
    Yantai-Jingshi Institute of Material Genome Engineering)

  • Xuebo Chen

    (Beijing Normal University
    Yantai-Jingshi Institute of Material Genome Engineering
    Shandong Laboratory of Yantai Advanced Materials and Green Manufacturing)

  • Qi-Qiang Wang

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • De-Xian Wang

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Yu-Fei Ao

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

Abstract

Biocatalysis is an attractive approach for the synthesis of chiral pharmaceuticals and fine chemicals, but assessing and/or improving the enantioselectivity of biocatalyst towards target substrates is often time and resource intensive. Although machine learning has been used to reveal the underlying relationship between protein sequences and biocatalytic enantioselectivity, the establishment of substrate fitness space is usually disregarded by chemists and is still a challenge. Using 240 datasets collected in our previous works, we adopt chemistry and geometry descriptors and build random forest classification models for predicting the enantioselectivity of amidase towards new substrates. We further propose a heuristic strategy based on these models, by which the rational protein engineering can be efficiently performed to synthesize chiral compounds with higher ee values, and the optimized variant results in a 53-fold higher E-value comparing to the wild-type amidase. This data-driven methodology is expected to broaden the application of machine learning in biocatalysis research.

Suggested Citation

  • Zi-Lin Li & Shuxin Pei & Ziying Chen & Teng-Yu Huang & Xu-Dong Wang & Lin Shen & Xuebo Chen & Qi-Qiang Wang & De-Xian Wang & Yu-Fei Ao, 2024. "Machine learning-assisted amidase-catalytic enantioselectivity prediction and rational design of variants for improving enantioselectivity," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-53048-0
    DOI: 10.1038/s41467-024-53048-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-53048-0
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-53048-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Sarah L. Lovelock & Rebecca Crawshaw & Sophie Basler & Colin Levy & David Baker & Donald Hilvert & Anthony P. Green, 2022. "The road to fully programmable protein catalysis," Nature, Nature, vol. 606(7912), pages 49-58, June.
    2. Jolene P. Reid & Matthew S. Sigman, 2019. "Holistic prediction of enantioselectivity in asymmetric catalysis," Nature, Nature, vol. 571(7765), pages 343-348, July.
    3. Nicolae Sapoval & Amirali Aghazadeh & Michael G. Nute & Dinler A. Antunes & Advait Balaji & Richard Baraniuk & C. J. Barberan & Ruth Dannenfelser & Chen Dun & Mohammadamin Edrisi & R. A. Leo Elworth &, 2022. "Current progress and open challenges for applying deep learning across the biosciences," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shu-Wen Li & Li-Cheng Xu & Cheng Zhang & Shuo-Qing Zhang & Xin Hong, 2023. "Reaction performance prediction with an extrapolative and interpretable graph model based on chemical knowledge," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    2. Jun-Kuan Li & Ge Qu & Xu Li & Yuchen Tian & Chengsen Cui & Fa-Guang Zhang & Wuyuan Zhang & Jun-An Ma & Manfred T. Reetz & Zhoutong Sun, 2022. "Rational enzyme design for enabling biocatalytic Baldwin cyclization and asymmetric synthesis of chiral heterocycles," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    3. Wenjing Nie & Qiongqiong Wan & Jian Sun & Moran Chen & Ming Gao & Suming Chen, 2023. "Ultra-high-throughput mapping of the chemical space of asymmetric catalysis enables accelerated reaction discovery," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    4. Xiaoqian Wang & Yang Huang & Xiaoyu Xie & Yan Liu & Ziyu Huo & Maverick Lin & Hongliang Xin & Rong Tong, 2023. "Bayesian-optimization-assisted discovery of stereoselective aluminum complexes for ring-opening polymerization of racemic lactide," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    5. Shingo Harada & Hiroki Takenaka & Tsubasa Ito & Haruki Kanda & Tetsuhiro Nemoto, 2024. "Valence-isomer selective cycloaddition reaction of cycloheptatrienes-norcaradienes," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    6. Peihua Lin & Bo Zhang & Hongli Yang & Shengfei Yang & Pengpeng Xue & Ying Chen & Shiyi Yu & Jichao Zhang & Yixiao Zhang & Liwei Chen & Chunhai Fan & Fangyuan Li & Daishun Ling, 2024. "An artificial protein modulator reprogramming neuronal protein functions," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    7. Yu Zong & Yuxin Wang & Yi Yang & Dan Zhao & Xiaoqing Wang & Chengpin Shen & Liang Qiao, 2023. "DeepFLR facilitates false localization rate control in phosphoproteomics," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    8. Xudong Wang & Chris Neale & Soo-Kyung Kim & William A. Goddard & Libin Ye, 2023. "Intermediate-state-trapped mutants pinpoint G protein-coupled receptor conformational allostery," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    9. Jie Ding & Runping Ye & Yanghe Fu & Yiming He & Ye Wu & Yulong Zhang & Qin Zhong & Harold H. Kung & Maohong Fan, 2023. "Direct synthesis of urea from carbon dioxide and ammonia," Nature Communications, Nature, vol. 14(1), pages 1-4, December.
    10. Amy E. Hutton & Jake Foster & Rebecca Crawshaw & Florence J. Hardy & Linus O. Johannissen & Thomas M. Lister & Emilie F. Gérard & Zachary Birch-Price & Richard Obexer & Sam Hay & Anthony P. Green, 2024. "A non-canonical nucleophile unlocks a new mechanistic pathway in a designed enzyme," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    11. Haoran Huang & Tao Yan & Chang Liu & Yuxiang Lu & Zhigang Wu & Xingchu Wang & Jie Wang, 2024. "Genetically encoded Nδ-vinyl histidine for the evolution of enzyme catalytic center," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    12. Enrico Orsi & Lennart Schada von Borzyskowski & Stephan Noack & Pablo I. Nikel & Steffen N. Lindner, 2024. "Automated in vivo enzyme engineering accelerates biocatalyst optimization," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    13. Thuy N. Nguyen & Christine Ingle & Samuel Thompson & Kimberly A. Reynolds, 2024. "The genetic landscape of a metabolic interaction," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    14. Anshul Thakur & Tingting Zhu & Vinayak Abrol & Jacob Armstrong & Yujiang Wang & David A. Clifton, 2024. "Data encoding for healthcare data democratization and information leakage prevention," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    15. Diandra S. Hassan & Christian Wolf, 2021. "Optical deciphering of multinary chiral compound mixtures through organic reaction based chemometric chirality sensing," Nature Communications, Nature, vol. 12(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-53048-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.