IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v623y2023i7985d10.1038_s41586-023-06668-3.html
   My bibliography  Save this article

Human-like systematic generalization through a meta-learning neural network

Author

Listed:
  • Brenden M. Lake

    (New York University)

  • Marco Baroni

    (Catalan Institution for Research and Advanced Studies (ICREA)
    Universitat Pompeu Fabra)

Abstract

The power of human language and thought arises from systematic compositionality—the algebraic ability to understand and produce novel combinations from known components. Fodor and Pylyshyn1 famously argued that artificial neural networks lack this capacity and are therefore not viable models of the mind. Neural networks have advanced considerably in the years since, yet the systematicity challenge persists. Here we successfully address Fodor and Pylyshyn’s challenge by providing evidence that neural networks can achieve human-like systematicity when optimized for their compositional skills. To do so, we introduce the meta-learning for compositionality (MLC) approach for guiding training through a dynamic stream of compositional tasks. To compare humans and machines, we conducted human behavioural experiments using an instruction learning paradigm. After considering seven different models, we found that, in contrast to perfectly systematic but rigid probabilistic symbolic models, and perfectly flexible but unsystematic neural networks, only MLC achieves both the systematicity and flexibility needed for human-like generalization. MLC also advances the compositional skills of machine learning systems in several systematic generalization benchmarks. Our results show how a standard neural network architecture, optimized for its compositional skills, can mimic human systematic generalization in a head-to-head comparison.

Suggested Citation

  • Brenden M. Lake & Marco Baroni, 2023. "Human-like systematic generalization through a meta-learning neural network," Nature, Nature, vol. 623(7985), pages 115-121, November.
  • Handle: RePEc:nat:nature:v:623:y:2023:i:7985:d:10.1038_s41586-023-06668-3
    DOI: 10.1038/s41586-023-06668-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-023-06668-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-023-06668-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Huang, Chengdai & Wang, Huanan & Cao, Jinde & Liu, Heng, 2024. "Delay-dependent bifurcation conditions in a fractional-order inertial BAM neural network," Chaos, Solitons & Fractals, Elsevier, vol. 185(C).
    2. Jian-Qiao Zhu & Haijiang Yan & Thomas L. Griffiths, 2024. "Language Models Trained to do Arithmetic Predict Human Risky and Intertemporal Choice," Papers 2405.19313, arXiv.org.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:623:y:2023:i:7985:d:10.1038_s41586-023-06668-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.