IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v563y2018i7729d10.1038_s41586-018-0630-0.html
   My bibliography  Save this article

Cryo-EM structure of the Ebola virus nucleoprotein–RNA complex at 3.6 Å resolution

Author

Listed:
  • Yukihiko Sugita

    (Okinawa Institute of Science and Technology Graduate University
    Osaka University)

  • Hideyuki Matsunami

    (Okinawa Institute of Science and Technology Graduate University)

  • Yoshihiro Kawaoka

    (Institute of Medical Science, University of Tokyo
    University of Wisconsin-Madison
    University of Tokyo)

  • Takeshi Noda

    (Kyoto University
    Japan Science and Technology Agency)

  • Matthias Wolf

    (Okinawa Institute of Science and Technology Graduate University)

Abstract

Ebola virus causes haemorrhagic fever with a high fatality rate in humans and non-human primates. It belongs to the family Filoviridae in the order Mononegavirales, which are viruses that contain linear, non-segmented, negative-sense, single-stranded genomic RNA1,2. The enveloped, filamentous virion contains the nucleocapsid, consisting of the helical nucleoprotein–RNA complex, VP24, VP30, VP35 and viral polymerase1,3. The nucleoprotein–RNA complex acts as a scaffold for nucleocapsid formation and as a template for RNA replication and transcription by condensing RNA into the virion4,5. RNA binding and nucleoprotein oligomerization are synergistic and do not readily occur independently6. Although recent cryo-electron tomography studies have revealed the overall architecture of the nucleocapsid core4,5, there has been no high-resolution reconstruction of the nucleocapsid. Here we report the structure of a recombinant Ebola virus nucleoprotein–RNA complex expressed in mammalian cells without chemical fixation, at near-atomic resolution using single-particle cryo-electron microscopy. Our structure reveals how the Ebola virus nucleocapsid core encapsidates its viral genome, its sequence-independent coordination with RNA by nucleoprotein, and the dynamic transition between the RNA-free and RNA-bound states. It provides direct structural evidence for the role of the N terminus of nucleoprotein in subunit oligomerization, and for the hydrophobic and electrostatic interactions that lead to the formation of the helical assembly. The structure is validated as representative of the native biological assembly of the nucleocapsid core by consistent dimensions and symmetry with the full virion5. The atomic model provides a detailed mechanistic basis for understanding nucleocapsid assembly and highlights key structural features that may serve as targets for anti-viral drug development.

Suggested Citation

  • Yukihiko Sugita & Hideyuki Matsunami & Yoshihiro Kawaoka & Takeshi Noda & Matthias Wolf, 2018. "Cryo-EM structure of the Ebola virus nucleoprotein–RNA complex at 3.6 Å resolution," Nature, Nature, vol. 563(7729), pages 137-140, November.
  • Handle: RePEc:nat:nature:v:563:y:2018:i:7729:d:10.1038_s41586-018-0630-0
    DOI: 10.1038/s41586-018-0630-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-018-0630-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-018-0630-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lorène Gonnin & Ambroise Desfosses & Maria Bacia-Verloop & Didier Chevret & Marie Galloux & Jean-François Éléouët & Irina Gutsche, 2023. "Structural landscape of the respiratory syncytial virus nucleocapsids," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    2. Yoko Fujita-Fujiharu & Yukihiko Sugita & Yuki Takamatsu & Kazuya Houri & Manabu Igarashi & Yukiko Muramoto & Masahiro Nakano & Yugo Tsunoda & Ichiro Taniguchi & Stephan Becker & Takeshi Noda, 2022. "Structural insight into Marburg virus nucleoprotein–RNA complex formation," Nature Communications, Nature, vol. 13(1), pages 1-9, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:563:y:2018:i:7729:d:10.1038_s41586-018-0630-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.