IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-54422-8.html
   My bibliography  Save this article

Structural effects of high laser power densities on an early bacteriorhodopsin photocycle intermediate

Author

Listed:
  • Quentin Bertrand

    (Paul Scherrer Institut)

  • Przemyslaw Nogly

    (Paul Scherrer Institut
    ETH Zürich
    Gronostajowa 7)

  • Eriko Nango

    (Sayo-gun
    Sayo-gun
    Sakyo-ku)

  • Demet Kekilli

    (Paul Scherrer Institut)

  • Georgii Khusainov

    (Paul Scherrer Institut)

  • Antonia Furrer

    (Paul Scherrer Institut)

  • Daniel James

    (Paul Scherrer Institut)

  • Florian Dworkowski

    (Paul Scherrer Institut)

  • Petr Skopintsev

    (Paul Scherrer Institut)

  • Sandra Mous

    (Paul Scherrer Institut
    ETH Zürich)

  • Isabelle Martiel

    (Paul Scherrer Institut)

  • Per Börjesson

    (Box 462)

  • Giorgia Ortolani

    (Box 462)

  • Chia-Ying Huang

    (Paul Scherrer Institut)

  • Michal Kepa

    (Paul Scherrer Institut)

  • Dmitry Ozerov

    (Paul Scherrer Institut)

  • Steffen Brünle

    (Paul Scherrer Institut)

  • Valerie Panneels

    (Paul Scherrer Institut)

  • Tomoyuki Tanaka

    (Sayo-gun)

  • Rie Tanaka

    (Sayo-gun)

  • Kensuke Tono

    (Sayo-gun)

  • Shigeki Owada

    (Sayo-gun)

  • Philip J. M. Johnson

    (Paul Scherrer Institut)

  • Karol Nass

    (Paul Scherrer Institut)

  • Gregor Knopp

    (Paul Scherrer Institut)

  • Claudio Cirelli

    (Paul Scherrer Institut)

  • Christopher Milne

    (Paul Scherrer Institut)

  • Gebhard Schertler

    (Paul Scherrer Institut)

  • So Iwata

    (Sakyo-ku
    Kawaguchi)

  • Richard Neutze

    (Box 462)

  • Tobias Weinert

    (Paul Scherrer Institut)

  • Jörg Standfuss

    (Paul Scherrer Institut)

Abstract

Time-resolved serial crystallography at X-ray Free Electron Lasers offers the opportunity to observe ultrafast photochemical reactions at the atomic level. The technique has yielded exciting molecular insights into various biological processes including light sensing and photochemical energy conversion. However, to achieve sufficient levels of activation within an optically dense crystal, high laser power densities are often used, which has led to an ongoing debate to which extent photodamage may compromise interpretation of the results. Here we compare time-resolved serial crystallographic data of the bacteriorhodopsin K-intermediate collected at laser power densities ranging from 0.04 to 2493 GW/cm2 and follow energy dissipation of the absorbed photons logarithmically from picoseconds to milliseconds. Although the effects of high laser power densities on the overall structure are small, in the upper excitation range we observe significant changes in retinal conformation and increased heating of the functionally critical counterion cluster. We compare light-activation within crystals to that in solution and discuss the impact of the observed changes on bacteriorhodopsin biology.

Suggested Citation

  • Quentin Bertrand & Przemyslaw Nogly & Eriko Nango & Demet Kekilli & Georgii Khusainov & Antonia Furrer & Daniel James & Florian Dworkowski & Petr Skopintsev & Sandra Mous & Isabelle Martiel & Per Börj, 2024. "Structural effects of high laser power densities on an early bacteriorhodopsin photocycle intermediate," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-54422-8
    DOI: 10.1038/s41467-024-54422-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-54422-8
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-54422-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Michihiro Suga & Fusamichi Akita & Michihiro Sugahara & Minoru Kubo & Yoshiki Nakajima & Takanori Nakane & Keitaro Yamashita & Yasufumi Umena & Makoto Nakabayashi & Takahiro Yamane & Takamitsu Nakano , 2017. "Light-induced structural changes and the site of O=O bond formation in PSII caught by XFEL," Nature, Nature, vol. 543(7643), pages 131-135, March.
    2. Gabriela Nass Kovacs & Jacques-Philippe Colletier & Marie Luise Grünbein & Yang Yang & Till Stensitzki & Alexander Batyuk & Sergio Carbajo & R. Bruce Doak & David Ehrenberg & Lutz Foucar & Raphael Gas, 2019. "Three-dimensional view of ultrafast dynamics in photoexcited bacteriorhodopsin," Nature Communications, Nature, vol. 10(1), pages 1-17, December.
    3. Robert Dods & Petra Båth & Dmitry Morozov & Viktor Ahlberg Gagnér & David Arnlund & Hoi Ling Luk & Joachim Kübel & Michał Maj & Adams Vallejos & Cecilia Wickstrand & Robert Bosman & Kenneth R. Beyerle, 2021. "Ultrafast structural changes within a photosynthetic reaction centre," Nature, Nature, vol. 589(7841), pages 310-314, January.
    4. Christopher Kupitz & Shibom Basu & Ingo Grotjohann & Raimund Fromme & Nadia A. Zatsepin & Kimberly N. Rendek & Mark S. Hunter & Robert L. Shoeman & Thomas A. White & Dingjie Wang & Daniel James & Jay-, 2014. "Serial time-resolved crystallography of photosystem II using a femtosecond X-ray laser," Nature, Nature, vol. 513(7517), pages 261-265, September.
    5. Petr Skopintsev & David Ehrenberg & Tobias Weinert & Daniel James & Rajiv K. Kar & Philip J. M. Johnson & Dmitry Ozerov & Antonia Furrer & Isabelle Martiel & Florian Dworkowski & Karol Nass & Gregor K, 2020. "Femtosecond-to-millisecond structural changes in a light-driven sodium pump," Nature, Nature, vol. 583(7815), pages 314-318, July.
    6. R. J. Dwayne Miller & Olivier Paré-Labrosse & Antoine Sarracini & Jessica E. Besaw, 2020. "Three-dimensional view of ultrafast dynamics in photoexcited bacteriorhodopsin in the multiphoton regime and biological relevance," Nature Communications, Nature, vol. 11(1), pages 1-4, December.
    7. Richard Neutze & R. J. Dwayne Miller, 2024. "Energetic laser pulses alter outcomes of X-ray studies of proteins," Nature, Nature, vol. 626(8000), pages 720-722, February.
    8. Uwe Weierstall & Daniel James & Chong Wang & Thomas A. White & Dingjie Wang & Wei Liu & John C. H. Spence & R. Bruce Doak & Garrett Nelson & Petra Fromme & Raimund Fromme & Ingo Grotjohann & Christoph, 2014. "Lipidic cubic phase injector facilitates membrane protein serial femtosecond crystallography," Nature Communications, Nature, vol. 5(1), pages 1-6, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Maximilian Wranik & Michal W. Kepa & Emma V. Beale & Daniel James & Quentin Bertrand & Tobias Weinert & Antonia Furrer & Hannah Glover & Dardan Gashi & Melissa Carrillo & Yasushi Kondo & Robin T. Stip, 2023. "A multi-reservoir extruder for time-resolved serial protein crystallography and compound screening at X-ray free-electron lasers," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    2. Hannah Glover & Torben Saßmannshausen & Quentin Bertrand & Matilde Trabuco & Chavdar Slavov & Arianna Bacchin & Fabio Andres & Yasushi Kondo & Robin Stipp & Maximilian Wranik & Georgii Khusainov & Mel, 2024. "Photoswitch dissociation from a G protein-coupled receptor resolved by time-resolved serial crystallography," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    3. Maximilian Wranik & Tobias Weinert & Chavdar Slavov & Tiziana Masini & Antonia Furrer & Natacha Gaillard & Dario Gioia & Marco Ferrarotti & Daniel James & Hannah Glover & Melissa Carrillo & Demet Keki, 2023. "Watching the release of a photopharmacological drug from tubulin using time-resolved serial crystallography," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    4. Rana Hussein & Mohamed Ibrahim & Asmit Bhowmick & Philipp S. Simon & Ruchira Chatterjee & Louise Lassalle & Margaret Doyle & Isabel Bogacz & In-Sik Kim & Mun Hon Cheah & Sheraz Gul & Casper Lichtenber, 2021. "Structural dynamics in the water and proton channels of photosystem II during the S2 to S3 transition," Nature Communications, Nature, vol. 12(1), pages 1-16, December.
    5. Yu Guo & Lanlan He & Yunxuan Ding & Lars Kloo & Dimitrios A. Pantazis & Johannes Messinger & Licheng Sun, 2024. "Closing Kok’s cycle of nature’s water oxidation catalysis," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    6. Kaihua Zhang & Hao Wu & Nicholas Hoppe & Aashish Manglik & Yifan Cheng, 2022. "Fusion protein strategies for cryo-EM study of G protein-coupled receptors," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    7. Volha U. Chukhutsina & James M. Baxter & Alisia Fadini & Rhodri M. Morgan & Matthew A. Pope & Karim Maghlaoui & Christian M. Orr & Armin Wagner & Jasper J. Thor, 2022. "Light activation of Orange Carotenoid Protein reveals bicycle-pedal single-bond isomerization," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    8. Basudev Maity & Mitsuo Shoji & Fangjia Luo & Takanori Nakane & Satoshi Abe & Shigeki Owada & Jungmin Kang & Kensuke Tono & Rie Tanaka & Thuc Toan Pham & Mariko Kojima & Yuki Hishikawa & Junko Tanaka &, 2024. "Real-time observation of a metal complex-driven reaction intermediate using a porous protein crystal and serial femtosecond crystallography," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    9. Elizaveta Lyapina & Egor Marin & Anastasiia Gusach & Philipp Orekhov & Andrey Gerasimov & Aleksandra Luginina & Daniil Vakhrameev & Margarita Ergasheva & Margarita Kovaleva & Georgii Khusainov & Polin, 2022. "Structural basis for receptor selectivity and inverse agonism in S1P5 receptors," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    10. Michael W. Martynowycz & Anna Shiriaeva & Max T. B. Clabbers & William J. Nicolas & Sara J. Weaver & Johan Hattne & Tamir Gonen, 2023. "A robust approach for MicroED sample preparation of lipidic cubic phase embedded membrane protein crystals," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    11. Susannah Holmes & Henry J. Kirkwood & Richard Bean & Klaus Giewekemeyer & Andrew V. Martin & Marjan Hadian-Jazi & Max O. Wiedorn & Dominik Oberthür & Hugh Marman & Luigi Adriano & Nasser Al-Qudami & S, 2022. "Megahertz pulse trains enable multi-hit serial femtosecond crystallography experiments at X-ray free electron lasers," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    12. Changin Kim & So Ri Yun & Sang Jin Lee & Seong Ok Kim & Hyosub Lee & Jungkweon Choi & Jong Goo Kim & Tae Wu Kim & Seyoung You & Irina Kosheleva & Taeyoon Noh & Jonghoon Baek & Hyotcherl Ihee, 2024. "Structural dynamics of protein-protein association involved in the light-induced transition of Avena sativa LOV2 protein," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    13. Xiankun Li & Zheyun Liu & Haisheng Ren & Mainak Kundu & Frank W. Zhong & Lijuan Wang & Jiali Gao & Dongping Zhong, 2022. "Dynamics and mechanism of dimer dissociation of photoreceptor UVR8," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    14. Alma P. Perrino & Atsushi Miyagi & Simon Scheuring, 2021. "Single molecule kinetics of bacteriorhodopsin by HS-AFM," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    15. Kevin M. Dalton & Jack B. Greisman & Doeke R. Hekstra, 2022. "A unifying Bayesian framework for merging X-ray diffraction data," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    16. E. Podoliak & G. H. U. Lamm & E. Marin & A. V. Schellbach & D. A. Fedotov & A. Stetsenko & M. Asido & N. Maliar & G. Bourenkov & T. Balandin & C. Baeken & R. Astashkin & T. R. Schneider & A. Bateman &, 2024. "A subgroup of light-driven sodium pumps with an additional Schiff base counterion," Nature Communications, Nature, vol. 15(1), pages 1-16, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-54422-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.