IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-54225-x.html
   My bibliography  Save this article

Coordination engineering of heterogeneous high-valent Fe(IV)-oxo for safe removal of pollutants via powerful Fenton-like reactions

Author

Listed:
  • Yuanfang Lin

    (Guangdong University of Technology)

  • Ying Wang

    (Pohang University of Science and Technology (POSTECH))

  • Zongling Weng

    (Guangdong University of Technology)

  • Yang Zhou

    (Guangdong University of Technology)

  • Siqi Liu

    (Dalian University of Technology)

  • Xinwen Ou

    (Zhejiang University)

  • Xing Xu

    (Shandong University)

  • Yanpeng Cai

    (Guangdong University of Technology)

  • Jin Jiang

    (Guangdong University of Technology)

  • Bin Han

    (Guangdong University of Technology)

  • Zhifeng Yang

    (Guangdong University of Technology)

Abstract

Coordination engineering of high-valent Fe(IV)-oxo (FeIV=O) is expected to break the activity-selectivity trade-off of traditional reactive oxygen species, while attempts to regulate the oxidation behaviors of heterogeneous FeIV=O remain unexplored. Here, by coordination engineering of Fe-Nx single-atom catalysts (Fe-Nx SACs), we propose a feasible approach to regulate the oxidation behaviors of heterogeneous FeIV=O. The developed Fe-N2 SACs/peroxymonosulfate (PMS) system delivers boosted performance for FeIV=O generation, and thereby can selectively remove a range of pollutants within tens of seconds. In-situ spectra and theoretical simulations suggest that low-coordination Fe-Nx SACs favor the generation of FeIV=O via PMS activation as providing more electrons to facilitate the desorption of the key *SO4H intermediate. Due to their disparate attacking sites to sulfamethoxazole (SMX) molecules, Fe-N2 SACs mediated FeIV=O (FeIVN2=O) oxidize SMX to small molecules with less toxicity, while FeIVN4=O produces series of more toxic azo compounds through N-N coupling with more complex oxidation pathways.

Suggested Citation

  • Yuanfang Lin & Ying Wang & Zongling Weng & Yang Zhou & Siqi Liu & Xinwen Ou & Xing Xu & Yanpeng Cai & Jin Jiang & Bin Han & Zhifeng Yang, 2024. "Coordination engineering of heterogeneous high-valent Fe(IV)-oxo for safe removal of pollutants via powerful Fenton-like reactions," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-54225-x
    DOI: 10.1038/s41467-024-54225-x
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-54225-x
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-54225-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Tongcai Liu & Shaoze Xiao & Nan Li & Jiabin Chen & Xuefei Zhou & Yajie Qian & Ching-Hua Huang & Yalei Zhang, 2023. "Water decontamination via nonradical process by nanoconfined Fenton-like catalysts," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    2. Jaeheung Cho & Sujin Jeon & Samuel A. Wilson & Lei V. Liu & Eun A. Kang & Joseph J. Braymer & Mi Hee Lim & Britt Hedman & Keith O. Hodgson & Joan Selverstone Valentine & Edward I. Solomon & Wonwoo Nam, 2011. "Structure and reactivity of a mononuclear non-haem iron(III)–peroxo complex," Nature, Nature, vol. 478(7370), pages 502-505, October.
    3. Hongqiang Jin & Peipei Li & Peixin Cui & Jinan Shi & Wu Zhou & Xiaohu Yu & Weiguo Song & Changyan Cao, 2022. "Unprecedentedly high activity and selectivity for hydrogenation of nitroarenes with single atomic Co1-N3P1 sites," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    4. Shengwen Liu & Chenzhao Li & Michael J. Zachman & Yachao Zeng & Haoran Yu & Boyang Li & Maoyu Wang & Jonathan Braaten & Jiawei Liu & Harry M. Meyer & Marcos Lucero & A. Jeremy Kropf & E. Ercan Alp & Q, 2022. "Atomically dispersed iron sites with a nitrogen–carbon coating as highly active and durable oxygen reduction catalysts for fuel cells," Nature Energy, Nature, vol. 7(7), pages 652-663, July.
    5. Jiaqi Feng & Hongshuai Gao & Lirong Zheng & Zhipeng Chen & Shaojuan Zeng & Chongyang Jiang & Haifeng Dong & Licheng Liu & Suojiang Zhang & Xiangping Zhang, 2020. "A Mn-N3 single-atom catalyst embedded in graphitic carbon nitride for efficient CO2 electroreduction," Nature Communications, Nature, vol. 11(1), pages 1-8, December.
    6. Huayu Gu & Xiao Liu & Xiufan Liu & Cancan Ling & Kai Wei & Guangming Zhan & Yanbing Guo & Lizhi Zhang, 2021. "Adjacent single-atom irons boosting molecular oxygen activation on MnO2," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    7. Liangbo Xie & Pengfei Wang & Yi Li & Dongpeng Zhang & Denghui Shang & Wenwen Zheng & Yuguo Xia & Sihui Zhan & Wenping Hu, 2022. "Pauling-type adsorption of O2 induced electrocatalytic singlet oxygen production on N–CuO for organic pollutants degradation," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    8. Hong-Zhi Liu & Xiao-Xuan Shu & Mingjie Huang & Bing-Bing Wu & Jie-Jie Chen & Xi-Sheng Wang & Hui-Lin Li & Han-Qing Yu, 2024. "Tailoring d-band center of high-valent metal-oxo species for pollutant removal via complete polymerization," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    9. Ziming Wang & Andy Berbille & Yawei Feng & Site Li & Laipan Zhu & Wei Tang & Zhong Lin Wang, 2022. "Contact-electro-catalysis for the degradation of organic pollutants using pristine dielectric powders," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    10. Yuan Pan & Yinjuan Chen & Konglin Wu & Zheng Chen & Shoujie Liu & Xing Cao & Weng-Chon Cheong & Tao Meng & Jun Luo & Lirong Zheng & Chenguang Liu & Dingsheng Wang & Qing Peng & Jun Li & Chen Chen, 2019. "Regulating the coordination structure of single-atom Fe-NxCy catalytic sites for benzene oxidation," Nature Communications, Nature, vol. 10(1), pages 1-11, December.
    11. Yuzhu Zhou & Quan Zhou & Hengjie Liu & Wenjie Xu & Zhouxin Wang & Sicong Qiao & Honghe Ding & Dongliang Chen & Junfa Zhu & Zeming Qi & Xiaojun Wu & Qun He & Li Song, 2023. "Asymmetric dinitrogen-coordinated nickel single-atomic sites for efficient CO2 electroreduction," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chao-Hai Gu & Song Wang & Ai-Yong Zhang & Chang Liu & Jun Jiang & Han-Qing Yu, 2024. "Tuning electronic structure of metal-free dual-site catalyst enables exclusive singlet oxygen production and in-situ utilization," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    2. Ruijie Xie & Kaiheng Guo & Yong Li & Yingguang Zhang & Huanran Zhong & Dennis Y. C. Leung & Haibao Huang, 2024. "Harnessing air-water interface to generate interfacial ROS for ultrafast environmental remediation," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    3. Yan Meng & Yu-Qin Liu & Chao Wang & Yang Si & Yun-Jie Wang & Wen-Qi Xia & Tian Liu & Xu Cao & Zhi-Yan Guo & Jie-Jie Chen & Wen-Wei Li, 2024. "Nanoconfinement steers nonradical pathway transition in single atom fenton-like catalysis for improving oxidant utilization," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    4. Cha, Youngsun & Jang, Hoyoung & Kim, Taewon & Noh, Dowon & Choi, Wonjoon, 2024. "Synthesis of trimetallic oxide/nitrogen-doped carbon composite using ZIF-guided combustion pyrolysis for efficient bifunctional oxygen catalysis in zinc–air batteries," Energy, Elsevier, vol. 307(C).
    5. Qianqian Tang & Bangxiang Wu & Xiaowen Huang & Wei Ren & Lingling Liu & Lei Tian & Ying Chen & Long-Shuai Zhang & Qing Sun & Zhibing Kang & Tianyi Ma & Jian-Ping Zou, 2024. "Electron transfer mediated activation of periodate by contaminants to generate 1O2 by charge-confined single-atom catalyst," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    6. Jiqing Jiao & Qing Yuan & Meijie Tan & Xiaoqian Han & Mingbin Gao & Chao Zhang & Xuan Yang & Zhaolin Shi & Yanbin Ma & Hai Xiao & Jiangwei Zhang & Tongbu Lu, 2023. "Constructing asymmetric double-atomic sites for synergistic catalysis of electrochemical CO2 reduction," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    7. Kangkang Sun & Hongbin Shan & Helfried Neumann & Guo-Ping Lu & Matthias Beller, 2022. "Efficient iron single-atom catalysts for selective ammoxidation of alcohols to nitriles," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    8. Wenzhe Niu & Jie Feng & Junfeng Chen & Lei Deng & Wen Guo & Huajing Li & Liqiang Zhang & Youyong Li & Bo Zhang, 2024. "High-efficiency C3 electrosynthesis on a lattice-strain-stabilized nitrogen-doped Cu surface," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    9. Deyou Yu & Licong Xu & Kaixing Fu & Xia Liu & Shanli Wang & Minghua Wu & Wangyang Lu & Chunyu Lv & Jinming Luo, 2024. "Electronic structure modulation of iron sites with fluorine coordination enables ultra-effective H2O2 activation," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    10. Yusen Su & Andy Berbille & Xiao-Fen Li & Jinyang Zhang & MohammadJavad PourhosseiniAsl & Huifan Li & Zhanqi Liu & Shunning Li & Jianbo Liu & Laipan Zhu & Zhong Lin Wang, 2024. "Reduction of precious metal ions in aqueous solutions by contact-electro-catalysis," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    11. Xiang Gao & Zhichao Yang & Wen Zhang & Bingcai Pan, 2024. "Carbon redirection via tunable Fenton-like reactions under nanoconfinement toward sustainable water treatment," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    12. Zhibo Yao & Hao Cheng & Yifei Xu & Xinyu Zhan & Song Hong & Xinyi Tan & Tai-Sing Wu & Pei Xiong & Yun-Liang Soo & Molly Meng-Jung Li & Leiduan Hao & Liang Xu & Alex W. Robertson & Bingjun Xu & Ming Ya, 2024. "Hydrogen radical-boosted electrocatalytic CO2 reduction using Ni-partnered heteroatomic pairs," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    13. Shuhu Yin & Long Chen & Jian Yang & Xiaoyang Cheng & Hongbin Zeng & Yuhao Hong & Huan Huang & Xiaoxiao Kuai & Yangu Lin & Rui Huang & Yanxia Jiang & Shigang Sun, 2024. "A Fe-NC electrocatalyst boosted by trace bromide ions with high performance in proton exchange membrane fuel cells," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    14. Dongping Xue & Yifang Yuan & Yue Yu & Siran Xu & Yifan Wei & Jiaqi Zhang & Haizhong Guo & Minhua Shao & Jia-Nan Zhang, 2024. "Spin occupancy regulation of the Pt d-orbital for a robust low-Pt catalyst towards oxygen reduction," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    15. Ziming Wang & Xuanli Dong & Xiao-Fen Li & Yawei Feng & Shunning Li & Wei Tang & Zhong Lin Wang, 2024. "A contact-electro-catalysis process for producing reactive oxygen species by ball milling of triboelectric materials," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    16. Hongqiang Jin & Kaixin Zhou & Ruoxi Zhang & Hongjie Cui & Yu Yu & Peixin Cui & Weiguo Song & Changyan Cao, 2023. "Regulating the electronic structure through charge redistribution in dense single-atom catalysts for enhanced alkene epoxidation," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    17. Shuhu Yin & Hongyuan Yi & Mengli Liu & Jian Yang & Shuangli Yang & Bin-Wei Zhang & Long Chen & Xiaoyang Cheng & Huan Huang & Rui Huang & Yanxia Jiang & Honggang Liao & Shigang Sun, 2024. "An in situ exploration of how Fe/N/C oxygen reduction catalysts evolve during synthesis under pyrolytic conditions," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    18. Daying Zheng & Kaijie Liu & Zeshu Zhang & Qi Fu & Mengyao Bian & Xinyu Han & Xin Shen & Xiaohui Chen & Haijiao Xie & Xiao Wang & Xiangguang Yang & Yibo Zhang & Shuyan Song, 2024. "Essential features of weak current for excellent enhancement of NOx reduction over monoatomic V-based catalyst," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    19. Cong Fang & Jian Zhou & Lili Zhang & Wenchao Wan & Yuxiao Ding & Xiaoyan Sun, 2023. "Synergy of dual-atom catalysts deviated from the scaling relationship for oxygen evolution reaction," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    20. Jinfa Chang & Guanzhi Wang & Xiaoxia Chang & Zhenzhong Yang & Han Wang & Boyang Li & Wei Zhang & Libor Kovarik & Yingge Du & Nina Orlovskaya & Bingjun Xu & Guofeng Wang & Yang Yang, 2023. "Interface synergism and engineering of Pd/Co@N-C for direct ethanol fuel cells," Nature Communications, Nature, vol. 14(1), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-54225-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.