IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-48407-w.html
   My bibliography  Save this article

Reduction of precious metal ions in aqueous solutions by contact-electro-catalysis

Author

Listed:
  • Yusen Su

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Andy Berbille

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Xiao-Fen Li

    (Chinese Academy of Sciences
    Tsinghua University)

  • Jinyang Zhang

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • MohammadJavad PourhosseiniAsl

    (Chinese Academy of Sciences
    Peking University)

  • Huifan Li

    (Chinese Academy of Sciences
    Guangxi University)

  • Zhanqi Liu

    (Chinese Academy of Sciences
    Lanzhou University)

  • Shunning Li

    (Peking University)

  • Jianbo Liu

    (Tsinghua University)

  • Laipan Zhu

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Zhong Lin Wang

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences
    Yonsei University
    Georgia Institute of Technology)

Abstract

Precious metals are core assets for the development of modern technologies in various fields. Their scarcity poses the question of their cost, life cycle and reuse. Recently, an emerging catalysis employing contact-electrification (CE) at water-solid interfaces to drive redox reaction, called contact-electro-catalysis (CEC), has been used to develop metal free mechano-catalytic methods to efficiently degrade refractory organic compounds, produce hydrogen peroxide, or leach metals from spent Li-Ion batteries. Here, we show ultrasonic CEC can successfully drive the reduction of Ag(ac), Rh3+, [PtCl4]2-, Ag+, Hg2+, Pd2+, [AuCl4]-, and Ir3+, in both anaerobic and aerobic conditions. The effect of oxygen on the reaction is studied by electron paramagnetic resonance (EPR) spectroscopy and ab-initio simulation. Combining measurements of charge transfers during water-solid CE, EPR spectroscopy and gold extraction experiments help show the link between CE and CEC. What’s more, this method based on water-solid CE is capable of extracting gold from synthetic solutions with concentrations ranging from as low as 0.196 ppm up to 196 ppm, reaching in 3 h extraction capacities ranging from 0.756 to 722.5 mg g−1 in 3 h. Finally, we showed CEC is employed to design a metal-free, selective, and recyclable catalytic gold extraction methods from e-waste aqueous leachates.

Suggested Citation

  • Yusen Su & Andy Berbille & Xiao-Fen Li & Jinyang Zhang & MohammadJavad PourhosseiniAsl & Huifan Li & Zhanqi Liu & Shunning Li & Jianbo Liu & Laipan Zhu & Zhong Lin Wang, 2024. "Reduction of precious metal ions in aqueous solutions by contact-electro-catalysis," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-48407-w
    DOI: 10.1038/s41467-024-48407-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-48407-w
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-48407-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Yao Chen & Mengjiao Xu & Jieya Wen & Yu Wan & Qingfei Zhao & Xia Cao & Yong Ding & Zhong Lin Wang & Hexing Li & Zhenfeng Bian, 2021. "Selective recovery of precious metals through photocatalysis," Nature Sustainability, Nature, vol. 4(7), pages 618-626, July.
    2. Huifan Li & Andy Berbille & Xin Zhao & Ziming Wang & Wei Tang & Zhong Lin Wang, 2023. "A contact-electro-catalytic cathode recycling method for spent lithium-ion batteries," Nature Energy, Nature, vol. 8(10), pages 1137-1144, October.
    3. Ziming Wang & Andy Berbille & Yawei Feng & Site Li & Laipan Zhu & Wei Tang & Zhong Lin Wang, 2022. "Contact-electro-catalysis for the degradation of organic pollutants using pristine dielectric powders," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ziming Wang & Xuanli Dong & Xiao-Fen Li & Yawei Feng & Shunning Li & Wei Tang & Zhong Lin Wang, 2024. "A contact-electro-catalysis process for producing reactive oxygen species by ball milling of triboelectric materials," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    2. Huang Wu & Yu Wang & Chun Tang & Leighton O. Jones & Bo Song & Xiao-Yang Chen & Long Zhang & Yong Wu & Charlotte L. Stern & George C. Schatz & Wenqi Liu & J. Fraser Stoddart, 2023. "High-efficiency gold recovery by additive-induced supramolecular polymerization of β-cyclodextrin," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    3. Fei Li & Jiuyi Zhu & Pengzhan Sun & Mingrui Zhang & Zhenqing Li & Dingxin Xu & Xinyu Gong & Xiaolong Zou & A. K. Geim & Yang Su & Hui-Ming Cheng, 2022. "Highly efficient and selective extraction of gold by reduced graphene oxide," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    4. Yikui Gao & Lixia He & Di Liu & Jiayue Zhang & Linglin Zhou & Zhong Lin Wang & Jie Wang, 2024. "Spontaneously established reverse electric field to enhance the performance of triboelectric nanogenerators via improving Coulombic efficiency," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    5. Xiaowei Shi & Chao Dai & Xin Wang & Jiayue Hu & Junying Zhang & Lingxia Zheng & Liang Mao & Huajun Zheng & Mingshan Zhu, 2022. "Protruding Pt single-sites on hexagonal ZnIn2S4 to accelerate photocatalytic hydrogen evolution," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    6. Weiyin Chen & Yi Cheng & Jinhang Chen & Ksenia V. Bets & Rodrigo V. Salvatierra & Chang Ge & John Tianci Li & Duy Xuan Luong & Carter Kittrell & Zicheng Wang & Emily A. McHugh & Guanhui Gao & Bing Den, 2024. "Nondestructive flash cathode recycling," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    7. Ziwei Yu & Xuming Jin & Yang Guo & Qian Liu & Wenyu Xiang & Shuai Zhou & Jiaying Wang & Dailin Yang & Hao Bin Wu & Juan Wang, 2024. "Decoupled oxidation process enabled by atomically dispersed copper electrodes for in-situ chemical water treatment," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    8. Kyoungmun Lee & Yumi Cho & Jin Chul Kim & Chiyoung Choi & Jiwon Kim & Jae Kyoo Lee & Sheng Li & Sang Kyu Kwak & Siyoung Q. Choi, 2024. "Catalyst-free selective oxidation of C(sp3)-H bonds in toluene on water," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    9. Yan Guo & Bowen Zhu & Chuyang Y. Tang & Qixin Zhou & Yongfa Zhu, 2024. "Photogenerated outer electric field induced electrophoresis of organic nanocrystals for effective solid-solid photocatalysis," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    10. Ritwick Ghosh & Adrien Baut & Giorgio Belleri & Michael Kappl & Hans-Jürgen Butt & Thomas M. Schutzius, 2023. "Photocatalytically reactive surfaces for simultaneous water harvesting and treatment," Nature Sustainability, Nature, vol. 6(12), pages 1663-1672, December.
    11. Jie Luo & Xiao Luo & Mo Xie & Hao-Zhen Li & Haiyan Duan & Hou-Gan Zhou & Rong-Jia Wei & Guo-Hong Ning & Dan Li, 2022. "Selective and rapid extraction of trace amount of gold from complex liquids with silver(I)-organic frameworks," Nature Communications, Nature, vol. 13(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-48407-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.