IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-53289-z.html
   My bibliography  Save this article

Harnessing air-water interface to generate interfacial ROS for ultrafast environmental remediation

Author

Listed:
  • Ruijie Xie

    (Sun Yat-sen University)

  • Kaiheng Guo

    (Sun Yat-sen University)

  • Yong Li

    (University of Bremen)

  • Yingguang Zhang

    (The University of Hong Kong)

  • Huanran Zhong

    (Sun Yat-sen University)

  • Dennis Y. C. Leung

    (The University of Hong Kong)

  • Haibao Huang

    (Sun Yat-sen University
    Xinjiang University)

Abstract

The air-water interface of microbubbles represents a crucial microenvironment that can dramatically accelerate reactive oxidative species (ROS) reactions. However, the dynamic nature of microbubbles presents challenges in probing ROS behaviors at the air-water interface, limiting a comprehensive understanding of their chemistry and application. Here we develop an approach to investigate the interfacial ROS via coupling microbubbles with a Fenton-like reaction. Amphiphilic single-Co-atom catalyst (Co@SCN) is employed to efficiently transport the oxidant peroxymonosulfate (PMS) from the bulk solution to the microbubble interface. This triggers an accelerated generation of interfacial sulfate radicals (SO4•−), with 20-fold higher concentration (4.48 × 10−11 M) than the bulk SO4•−. Notably, the generated SO4•− is preferentially situated at the air-water interface due to its lowest free energy and the strong hydrogen bonding interactions with H3O+. Moreover, it exhibits the highest oxidation reactivity toward gaseous pollutants like toluene, with a rate constant of 1010 M−1 s−1-over 100 times greater than bulk reactions. This work demonstrates a promising strategy to harness the air-water interface for accelerating ROS-induced reactions, highlighting the importance of interfacial ROS and its potential application.

Suggested Citation

  • Ruijie Xie & Kaiheng Guo & Yong Li & Yingguang Zhang & Huanran Zhong & Dennis Y. C. Leung & Haibao Huang, 2024. "Harnessing air-water interface to generate interfacial ROS for ultrafast environmental remediation," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-53289-z
    DOI: 10.1038/s41467-024-53289-z
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-53289-z
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-53289-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Tongcai Liu & Shaoze Xiao & Nan Li & Jiabin Chen & Xuefei Zhou & Yajie Qian & Ching-Hua Huang & Yalei Zhang, 2023. "Water decontamination via nonradical process by nanoconfined Fenton-like catalysts," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    2. Hong-Zhi Liu & Xiao-Xuan Shu & Mingjie Huang & Bing-Bing Wu & Jie-Jie Chen & Xi-Sheng Wang & Hui-Lin Li & Han-Qing Yu, 2024. "Tailoring d-band center of high-valent metal-oxo species for pollutant removal via complete polymerization," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    3. Kyoungmun Lee & Yumi Cho & Jin Chul Kim & Chiyoung Choi & Jiwon Kim & Jae Kyoo Lee & Sheng Li & Sang Kyu Kwak & Siyoung Q. Choi, 2024. "Catalyst-free selective oxidation of C(sp3)-H bonds in toluene on water," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    4. Yunmao Zhang & Yuhang Han & Xiaoliang Ji & Duyang Zang & Long Qiao & Zhizhi Sheng & Chunyan Wang & Shuli Wang & Miao Wang & Yaqi Hou & Xinyu Chen & Xu Hou, 2022. "Continuous air purification by aqueous interface filtration and absorption," Nature, Nature, vol. 610(7930), pages 74-80, October.
    5. Yan B. Vogel & Cameron W. Evans & Mattia Belotti & Longkun Xu & Isabella C. Russell & Li-Juan Yu & Alfred K. K. Fung & Nicholas S. Hill & Nadim Darwish & Vinicius R. Gonçales & Michelle L. Coote & K. , 2020. "The corona of a surface bubble promotes electrochemical reactions," Nature Communications, Nature, vol. 11(1), pages 1-8, December.
    6. Ying-Jie Zhang & Gui-Xiang Huang & Lea R. Winter & Jie-Jie Chen & Lili Tian & Shu-Chuan Mei & Ze Zhang & Fei Chen & Zhi-Yan Guo & Rong Ji & Ye-Zi You & Wen-Wei Li & Xian-Wei Liu & Han-Qing Yu & Menach, 2022. "Simultaneous nanocatalytic surface activation of pollutants and oxidants for highly efficient water decontamination," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    7. Lixin Wang & Longjun Rao & Maoxi Ran & Qikai Shentu & Zenglong Wu & Wenkai Song & Ziwei Zhang & Hao Li & Yuyuan Yao & Weiyang Lv & Mingyang Xing, 2023. "A polymer tethering strategy to achieve high metal loading on catalysts for Fenton reactions," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ming-Yan Lan & Yu-Hang Li & Chong-Chen Wang & Xin-Jie Li & Jiazhen Cao & Linghui Meng & Shuai Gao & Yuhui Ma & Haodong Ji & Mingyang Xing, 2024. "Multi-channel electron transfer induced by polyvanadate in metal-organic framework for boosted peroxymonosulfate activation," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    2. Xiang Gao & Zhichao Yang & Wen Zhang & Bingcai Pan, 2024. "Carbon redirection via tunable Fenton-like reactions under nanoconfinement toward sustainable water treatment," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    3. Hong-Zhi Liu & Xiao-Xuan Shu & Mingjie Huang & Bing-Bing Wu & Jie-Jie Chen & Xi-Sheng Wang & Hui-Lin Li & Han-Qing Yu, 2024. "Tailoring d-band center of high-valent metal-oxo species for pollutant removal via complete polymerization," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    4. Yuanfang Lin & Ying Wang & Zongling Weng & Yang Zhou & Siqi Liu & Xinwen Ou & Xing Xu & Yanpeng Cai & Jin Jiang & Bin Han & Zhifeng Yang, 2024. "Coordination engineering of heterogeneous high-valent Fe(IV)-oxo for safe removal of pollutants via powerful Fenton-like reactions," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    5. Yan Meng & Yu-Qin Liu & Chao Wang & Yang Si & Yun-Jie Wang & Wen-Qi Xia & Tian Liu & Xu Cao & Zhi-Yan Guo & Jie-Jie Chen & Wen-Wei Li, 2024. "Nanoconfinement steers nonradical pathway transition in single atom fenton-like catalysis for improving oxidant utilization," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    6. Ruijuan Zhao & Lei Li & Qianbao Wu & Wei Luo & Qiu Zhang & Chunhua Cui, 2024. "Spontaneous formation of reactive redox radical species at the interface of gas diffusion electrode," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    7. Siqi Liu & David Jassby & Daniel Mandler & Andrea I. Schäfer, 2024. "Differentiation of adsorption and degradation in steroid hormone micropollutants removal using electrochemical carbon nanotube membrane," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    8. Ziwei Yu & Xuming Jin & Yang Guo & Qian Liu & Wenyu Xiang & Shuai Zhou & Jiaying Wang & Dailin Yang & Hao Bin Wu & Juan Wang, 2024. "Decoupled oxidation process enabled by atomically dispersed copper electrodes for in-situ chemical water treatment," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    9. Chao-Hai Gu & Song Wang & Ai-Yong Zhang & Chang Liu & Jun Jiang & Han-Qing Yu, 2024. "Tuning electronic structure of metal-free dual-site catalyst enables exclusive singlet oxygen production and in-situ utilization," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    10. Lei Zhang & Hanwen Liu & Bo Song & Jialun Gu & Lanxi Li & Wenhui Shi & Gan Li & Shiyu Zhong & Hui Liu & Xiaobo Wang & Junxiang Fan & Zhi Zhang & Pengfei Wang & Yonggang Yao & Yusheng Shi & Jian Lu, 2024. "Wood-inspired metamaterial catalyst for robust and high-throughput water purification," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    11. Zelin Wu & Zhaokun Xiong & Bingkun Huang & Gang Yao & Sihui Zhan & Bo Lai, 2024. "Long-range interactions driving neighboring Fe–N4 sites in Fenton-like reactions for sustainable water decontamination," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    12. Joseph P. Heindel & R. Allen LaCour & Teresa Head-Gordon, 2024. "The role of charge in microdroplet redox chemistry," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    13. Xiang Zhang & Jingjing Tang & Lingling Wang & Chuan Wang & Lei Chen & Xinqing Chen & Jieshu Qian & Bingcai Pan, 2024. "Nanoconfinement-triggered oligomerization pathway for efficient removal of phenolic pollutants via a Fenton-like reaction," Nature Communications, Nature, vol. 15(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-53289-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.