IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-49605-2.html
   My bibliography  Save this article

Nanoconfinement steers nonradical pathway transition in single atom fenton-like catalysis for improving oxidant utilization

Author

Listed:
  • Yan Meng

    (University of Science & Technology of China
    University of Science & Technology of China)

  • Yu-Qin Liu

    (University of Science & Technology of China)

  • Chao Wang

    (University of Science & Technology of China)

  • Yang Si

    (Kunming Institute of Physics)

  • Yun-Jie Wang

    (University of Science & Technology of China
    University of Science & Technology of China)

  • Wen-Qi Xia

    (University of Science & Technology of China
    University of Science & Technology of China)

  • Tian Liu

    (University of Science & Technology of China)

  • Xu Cao

    (University of Science & Technology of China)

  • Zhi-Yan Guo

    (University of Science & Technology of China
    University of Science & Technology of China)

  • Jie-Jie Chen

    (University of Science & Technology of China)

  • Wen-Wei Li

    (University of Science & Technology of China
    University of Science & Technology of China)

Abstract

The introduction of single-atom catalysts (SACs) into Fenton-like oxidation promises ultrafast water pollutant elimination, but the limited access to pollutants and oxidant by surface catalytic sites and the intensive oxidant consumption still severely restrict the decontamination performance. While nanoconfinement of SACs allows drastically enhanced decontamination reaction kinetics, the detailed regulatory mechanisms remain elusive. Here, we unveil that, apart from local enrichment of reactants, the catalytic pathway shift is also an important cause for the reactivity enhancement of nanoconfined SACs. The surface electronic structure of cobalt site is altered by confining it within the nanopores of mesostructured silica particles, which triggers a fundamental transition from singlet oxygen to electron transfer pathway for 4-chlorophenol oxidation. The changed pathway and accelerated interfacial mass transfer render the nanoconfined system up to 34.7-fold higher pollutant degradation rate and drastically raised peroxymonosulfate utilization efficiency (from 61.8% to 96.6%) relative to the unconfined control. It also demonstrates superior reactivity for the degradation of other electron-rich phenolic compounds, good environment robustness, and high stability for treating real lake water. Our findings deepen the knowledge of nanoconfined catalysis and may inspire innovations in low-carbon water purification technologies and other heterogeneous catalytic applications.

Suggested Citation

  • Yan Meng & Yu-Qin Liu & Chao Wang & Yang Si & Yun-Jie Wang & Wen-Qi Xia & Tian Liu & Xu Cao & Zhi-Yan Guo & Jie-Jie Chen & Wen-Wei Li, 2024. "Nanoconfinement steers nonradical pathway transition in single atom fenton-like catalysis for improving oxidant utilization," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-49605-2
    DOI: 10.1038/s41467-024-49605-2
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-49605-2
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-49605-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Ziwei Yu & Xuming Jin & Yang Guo & Qian Liu & Wenyu Xiang & Shuai Zhou & Jiaying Wang & Dailin Yang & Hao Bin Wu & Juan Wang, 2024. "Decoupled oxidation process enabled by atomically dispersed copper electrodes for in-situ chemical water treatment," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    2. Tongcai Liu & Shaoze Xiao & Nan Li & Jiabin Chen & Xuefei Zhou & Yajie Qian & Ching-Hua Huang & Yalei Zhang, 2023. "Water decontamination via nonradical process by nanoconfined Fenton-like catalysts," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    3. Conghui Liu & Yu Cao & Yaru Cheng & Dongdong Wang & Tailin Xu & Lei Su & Xueji Zhang & Haifeng Dong, 2020. "An open source and reduce expenditure ROS generation strategy for chemodynamic/photodynamic synergistic therapy," Nature Communications, Nature, vol. 11(1), pages 1-9, December.
    4. Xiuyun Wang & Xuanbei Peng & Wei Chen & Guangyong Liu & Anmin Zheng & Lirong Zheng & Jun Ni & Chak-tong Au & Lilong Jiang, 2020. "Insight into dynamic and steady-state active sites for nitrogen activation to ammonia by cobalt-based catalyst," Nature Communications, Nature, vol. 11(1), pages 1-10, December.
    5. Hong-Zhi Liu & Xiao-Xuan Shu & Mingjie Huang & Bing-Bing Wu & Jie-Jie Chen & Xi-Sheng Wang & Hui-Lin Li & Han-Qing Yu, 2024. "Tailoring d-band center of high-valent metal-oxo species for pollutant removal via complete polymerization," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    6. Wenchao Wan & Yonggui Zhao & Shiqian Wei & Carlos A. Triana & Jingguo Li & Andrea Arcifa & Christopher S. Allen & Rui Cao & Greta R. Patzke, 2021. "Mechanistic insight into the active centers of single/dual-atom Ni/Fe-based oxygen electrocatalysts," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zeyu Wang & William A. Goddard & Hai Xiao, 2023. "Potential-dependent transition of reaction mechanisms for oxygen evolution on layered double hydroxides," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    2. Xiang Gao & Zhichao Yang & Wen Zhang & Bingcai Pan, 2024. "Carbon redirection via tunable Fenton-like reactions under nanoconfinement toward sustainable water treatment," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    3. Zhongkai Xie & Shengjie Xu & Longhua Li & Shanhe Gong & Xiaojie Wu & Dongbo Xu & Baodong Mao & Ting Zhou & Min Chen & Xiao Wang & Weidong Shi & Shuyan Song, 2024. "Well-defined diatomic catalysis for photosynthesis of C2H4 from CO2," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    4. Du, Zhengyang & Dai, Zhenxue & Yang, Zhijie & Zhan, Chuanjun & Chen, Wei & Cao, Mingxu & Thanh, Hung Vo & Soltanian, Mohamad Reza, 2024. "Exploring hydrogen geologic storage in China for future energy: Opportunities and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 196(C).
    5. Hongqiang Jin & Kaixin Zhou & Ruoxi Zhang & Hongjie Cui & Yu Yu & Peixin Cui & Weiguo Song & Changyan Cao, 2023. "Regulating the electronic structure through charge redistribution in dense single-atom catalysts for enhanced alkene epoxidation," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    6. Cong Fang & Jian Zhou & Lili Zhang & Wenchao Wan & Yuxiao Ding & Xiaoyan Sun, 2023. "Synergy of dual-atom catalysts deviated from the scaling relationship for oxygen evolution reaction," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    7. Zichuang Li & Yangfan Lu & Jiang Li & Miao Xu & Yanpeng Qi & Sang-Won Park & Masaaki Kitano & Hideo Hosono & Jie-Sheng Chen & Tian-Nan Ye, 2023. "Multiple reaction pathway on alkaline earth imide supported catalysts for efficient ammonia synthesis," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    8. Lei Zhang & Hanwen Liu & Bo Song & Jialun Gu & Lanxi Li & Wenhui Shi & Gan Li & Shiyu Zhong & Hui Liu & Xiaobo Wang & Junxiang Fan & Zhi Zhang & Pengfei Wang & Yonggang Yao & Yusheng Shi & Jian Lu, 2024. "Wood-inspired metamaterial catalyst for robust and high-throughput water purification," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    9. Zelin Wu & Zhaokun Xiong & Bingkun Huang & Gang Yao & Sihui Zhan & Bo Lai, 2024. "Long-range interactions driving neighboring Fe–N4 sites in Fenton-like reactions for sustainable water decontamination," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    10. Yang Yang & Jinshu Huang & Wei Wei & Qin Zeng & Xipeng Li & Da Xing & Bo Zhou & Tao Zhang, 2022. "Switching the NIR upconversion of nanoparticles for the orthogonal activation of photoacoustic imaging and phototherapy," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    11. Xiang Zhang & Jingjing Tang & Lingling Wang & Chuan Wang & Lei Chen & Xinqing Chen & Jieshu Qian & Bingcai Pan, 2024. "Nanoconfinement-triggered oligomerization pathway for efficient removal of phenolic pollutants via a Fenton-like reaction," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    12. Gang He & Yashi Li & Muhammad Rizwan Younis & Lian-Hua Fu & Ting He & Shan Lei & Jing Lin & Peng Huang, 2022. "Synthetic biology-instructed transdermal microneedle patch for traceable photodynamic therapy," Nature Communications, Nature, vol. 13(1), pages 1-18, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-49605-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.