IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-54156-7.html
   My bibliography  Save this article

Evidence for the acclimation of ecosystem photosynthesis to soil moisture

Author

Listed:
  • Jinlong Peng

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Jiwang Tang

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Shudi Xie

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Yiheng Wang

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Jiaqiang Liao

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Chen Chen

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Chuanlian Sun

    (University of Chinese Academy of Sciences
    Chinese Academy of Sciences)

  • Jinhua Mao

    (Chinese Academy of Sciences)

  • Qingping Zhou

    (Southwest University for Nationalities)

  • Shuli Niu

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

Abstract

Ecosystem gross primary productivity (GPP) is the largest carbon flux between the atmosphere and biosphere and is strongly influenced by soil moisture. However, the response and acclimation of GPP to soil moisture remain poorly understood, leading to large uncertainties in characterizing the impact of soil moisture on GPP in Earth system models. Here we analyze the GPP-soil moisture response curves at 143 sites from the global FLUXNET. We find that GPP at 108 sites exhibits hump-shaped response curves with increasing soil moisture, and an apparent optimum soil moisture ( $${{\rm{SM}}}^{{\rm{GPP}}}_{{\rm{opt}}}$$ SM opt GPP , at which GPP reaches the maximum) exists widely with large variability among sites and biomes around the globe. Variation in $${{\rm{SM}}}^{{\rm{GPP}}}_{{\rm{opt}}}$$ SM opt GPP is mostly explained by local water availability, with drier ecosystems having lower $${{\rm{SM}}}^{{\rm{GPP}}}_{{\rm{opt}}}$$ SM opt GPP than wetter ecosystems, reflecting the water acclimation of $${{\rm{SM}}}^{{\rm{GPP}}}_{{\rm{opt}}}$$ SM opt GPP . This acclimation is further supported by a field experiment that only manipulates water and keeps other factors constant, which shows a downward shift in $${{\rm{SM}}}^{{\rm{GPP}}}_{{\rm{opt}}}$$ SM opt GPP after long-term water deficit, and thus a lower soil water requirement to maximize GPP. These results provide compelling evidence for the widespread $${{\rm{SM}}}^{{\rm{GPP}}}_{{\rm{opt}}}$$ SM opt GPP and its acclimation, shedding new light on understanding and predicting carbon-climate feedbacks.

Suggested Citation

  • Jinlong Peng & Jiwang Tang & Shudi Xie & Yiheng Wang & Jiaqiang Liao & Chen Chen & Chuanlian Sun & Jinhua Mao & Qingping Zhou & Shuli Niu, 2024. "Evidence for the acclimation of ecosystem photosynthesis to soil moisture," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-54156-7
    DOI: 10.1038/s41467-024-54156-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-54156-7
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-54156-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Xingyun Liang & Defu Wang & Qing Ye & Jinmeng Zhang & Mengyun Liu & Hui Liu & Kailiang Yu & Yujie Wang & Enqing Hou & Buqing Zhong & Long Xu & Tong Lv & Shouzhang Peng & Haibo Lu & Pierre Sicard & Ale, 2023. "Stomatal responses of terrestrial plants to global change," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    2. Travis E. Huxman & Melinda D. Smith & Philip A. Fay & Alan K. Knapp & M. Rebecca Shaw & Michael E. Loik & Stanley D. Smith & David T. Tissue & John C. Zak & Jake F. Weltzin & William T. Pockman & Osva, 2004. "Convergence across biomes to a common rain-use efficiency," Nature, Nature, vol. 429(6992), pages 651-654, June.
    3. Mark A. Adams & Thomas N. Buckley & Dan Binkley & Mathias Neumann & Tarryn L. Turnbull, 2021. "CO2, nitrogen deposition and a discontinuous climate response drive water use efficiency in global forests," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    4. Alexis Berg & Kirsten Findell & Benjamin Lintner & Alessandra Giannini & Sonia I. Seneviratne & Bart van den Hurk & Ruth Lorenz & Andy Pitman & Stefan Hagemann & Arndt Meier & Frédérique Cheruy & Agnè, 2016. "Land–atmosphere feedbacks amplify aridity increase over land under global warming," Nature Climate Change, Nature, vol. 6(9), pages 869-874, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yao Zhang & Pierre Gentine & Xiangzhong Luo & Xu Lian & Yanlan Liu & Sha Zhou & Anna M. Michalak & Wu Sun & Joshua B. Fisher & Shilong Piao & Trevor F. Keenan, 2022. "Increasing sensitivity of dryland vegetation greenness to precipitation due to rising atmospheric CO2," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    2. Xiumei Wang & Jianjun Dong & Taogetao Baoyin & Yuhai Bao, 2019. "Estimation and Climate Factor Contribution of Aboveground Biomass in Inner Mongolia’s Typical/Desert Steppes," Sustainability, MDPI, vol. 11(23), pages 1-15, November.
    3. Shulin Chen & Zhenghao Zhu & Xiaotong Liu & Li Yang, 2022. "Variation in Vegetation and Its Driving Force in the Pearl River Delta Region of China," IJERPH, MDPI, vol. 19(16), pages 1-15, August.
    4. Sileshi, Gudeta W. & Akinnifesi, Festus K. & Ajayi, Oluyede C. & Muys, Bart, 2011. "Integration of legume trees in maize-based cropping systems improves rain use efficiency and yield stability under rain-fed agriculture," Agricultural Water Management, Elsevier, vol. 98(9), pages 1364-1372, July.
    5. Zhao, Tianxing & Zhu, Yan & Ye, Ming & Yang, Jinzhong & Jia, Biao & Mao, Wei & Wu, Jingwei, 2022. "A new approach for estimating spatial-temporal phreatic evapotranspiration at a regional scale using NDVI and water table depth measurements," Agricultural Water Management, Elsevier, vol. 264(C).
    6. Pirzad, Alireza & Mohammadzadeh, Sevil, 2018. "Water use efficiency of three mycorrhizal Lamiaceae species (Lavandula officinalis, Rosmarinus officinalis and Thymus vulgaris)," Agricultural Water Management, Elsevier, vol. 204(C), pages 1-10.
    7. Zefeng Chen & Weiguang Wang & Giovanni Forzieri & Alessandro Cescatti, 2024. "Transition from positive to negative indirect CO2 effects on the vegetation carbon uptake," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    8. Ran Feng & Tripti Bhattacharya & Bette L. Otto-Bliesner & Esther C. Brady & Alan M. Haywood & Julia C. Tindall & Stephen J. Hunter & Ayako Abe-Ouchi & Wing-Le Chan & Masa Kageyama & Camille Contoux & , 2022. "Past terrestrial hydroclimate sensitivity controlled by Earth system feedbacks," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    9. Tengfei Yuan & Shaojian Huang & Peng Zhang & Zhengcheng Song & Jun Ge & Xin Miao & Yujuan Wang & Qiaotong Pang & Dong Peng & Peipei Wu & Junjiong Shao & Peipei Zhang & Yabo Wang & Hongyan Guo & Weidon, 2024. "Potential decoupling of CO2 and Hg uptake process by global vegetation in the 21st century," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    10. Shijie Zhou & Yiqiang Dong & Asitaiken Julihaiti & Tingting Nie & Anjing Jiang & Shazhou An, 2022. "Spatial Variation in Desert Spring Vegetation Biomass, Richness and Their Environmental Controls in the Arid Region of Central Asia," Sustainability, MDPI, vol. 14(19), pages 1-13, September.
    11. Stafford, Madison J. & Holländer, Hartmut M. & Dow, Karen, 2022. "Estimating groundwater recharge in the assiniboine delta aquifer using HYDRUS-1D," Agricultural Water Management, Elsevier, vol. 267(C).
    12. Fang Huang & Shuangling Xu, 2016. "Spatio-Temporal Variations of Rain-Use Efficiency in the West of Songliao Plain, China," Sustainability, MDPI, vol. 8(4), pages 1-19, March.
    13. Hsin Hsu & Paul A. Dirmeyer, 2023. "Soil moisture-evaporation coupling shifts into new gears under increasing CO2," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    14. Zhiqiang Wang & Heng Huang & Han Wang & Josep Peñuelas & Jordi Sardans & Ülo Niinemets & Karl J. Niklas & Yan Li & Jiangbo Xie & Ian J. Wright, 2022. "Leaf water content contributes to global leaf trait relationships," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    15. Emma Sumner & Susanna Venn, 2021. "Plant Responses to Changing Water Supply and Availability in High Elevation Ecosystems: A Quantitative Systematic Review and Meta-Analysis," Land, MDPI, vol. 10(11), pages 1-17, October.
    16. Jia, Binghao & Wang, Yuanyuan & Xie, Zhenghui, 2018. "Responses of the terrestrial carbon cycle to drought over China: Modeling sensitivities of the interactive nitrogen and dynamic vegetation," Ecological Modelling, Elsevier, vol. 368(C), pages 52-68.
    17. M. E. Gilbert & N. M. Holbrook, 2011. "Limitations to crop diversification for enhancing the resilience of rain-fed subsistence agriculture to drought," CID Working Papers 228, Center for International Development at Harvard University.
    18. Rakefet Shafran-Nathan & Tal Svoray & Avi Perevolotsky, 2013. "The resilience of annual vegetation primary production subjected to different climate change scenarios," Climatic Change, Springer, vol. 118(2), pages 227-243, May.
    19. Taofeek O. Muraina, 2020. "Frameworks on Patterns of Grasslands’ Sensitivity to Forecast Extreme Drought," Sustainability, MDPI, vol. 12(19), pages 1-13, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-54156-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.