IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v267y2022ics0378377422000610.html
   My bibliography  Save this article

Estimating groundwater recharge in the assiniboine delta aquifer using HYDRUS-1D

Author

Listed:
  • Stafford, Madison J.
  • Holländer, Hartmut M.
  • Dow, Karen

Abstract

Unconfined aquifers are often directly impacted by high irrigation demands. Therefore, accurate recharge estimates are crucial for sustainable groundwater management. It is important over time to re-examine the existing hydrologic understanding of aquifers, taking into account developments in knowledge and changing climate conditions. The last in depth study into the Assiniboine Delta Aquifer located in Manitoba, Canada, that gave a recharge estimate was conducted in the 1980s (Render, 1988). This work re-examined the Assiniboine Delta Aquifer, employing new methods and data to estimate recharge rates. Twelve one-dimensional models were created in the software HYDRUS-1D to model the soil water fluxes in the unsaturated zone to analyze the historic recharge from 1996 to 2019. Remote weather station data, measured hydraulic conductivity, soil texture distribution, soil moisture content, and soil temperature data were used to initialize and run the models. Inverse calibration used the measured moisture contents to calibrate the models, which resulted in Root Mean Square Error in the calibration and validation periods averaging 0.034 and 0.051 m3/m3, respectively, above the 0.025 m3/m3 sensor measurement error. Rough estimates of soil texture distribution across the aquifer was determined to assist in the final recharge estimate. The historical regional recharge average was estimated to be 68 mm/year, double the previous estimate for the aquifer (Render, 1988). Modelled periods were limited to less than a year due to limitations in the general HYDRUS-1D software model code under frozen soil conditions, which the Assiniboine Delta Aquifer experiences during the winter months. Assumptions on initial soil moisture contents, snowpack heights, and model start dates were best estimated for historical years. Results show these estimates can have significant impacts on the resulting recharge. Suggested future work includes implementing the HYDRUS-1D freeze-thaw code to allow for model spin-up and multi-year simulations to enhance the reliability of model results.

Suggested Citation

  • Stafford, Madison J. & Holländer, Hartmut M. & Dow, Karen, 2022. "Estimating groundwater recharge in the assiniboine delta aquifer using HYDRUS-1D," Agricultural Water Management, Elsevier, vol. 267(C).
  • Handle: RePEc:eee:agiwat:v:267:y:2022:i:c:s0378377422000610
    DOI: 10.1016/j.agwat.2022.107514
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377422000610
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2022.107514?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kosmas, C. & Marathianou, M. & Gerontidis, St. & Detsis, V. & Tsara, M. & Poesen, J., 2001. "Parameters affecting water vapor adsorption by the soil under semi-arid climatic conditions," Agricultural Water Management, Elsevier, vol. 48(1), pages 61-78, May.
    2. Singh, Simratpal & Coppi, Luca & Wang, Zijian & Tenuta, Mario & Holländer, Hartmut M., 2019. "Regionalisation of nitrate leaching on pasture land in Southern Manitoba," Agricultural Water Management, Elsevier, vol. 222(C), pages 286-300.
    3. J. S. Famiglietti, 2014. "The global groundwater crisis," Nature Climate Change, Nature, vol. 4(11), pages 945-948, November.
    4. Alexis Berg & Kirsten Findell & Benjamin Lintner & Alessandra Giannini & Sonia I. Seneviratne & Bart van den Hurk & Ruth Lorenz & Andy Pitman & Stefan Hagemann & Arndt Meier & Frédérique Cheruy & Agnè, 2016. "Land–atmosphere feedbacks amplify aridity increase over land under global warming," Nature Climate Change, Nature, vol. 6(9), pages 869-874, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bali, Khaled M. & Mohamed, Abdelmoneim Zakaria & Begna, Sultan & Wang, Dong & Putnam, Daniel & Dahlke, Helen E. & Eltarabily, Mohamed Galal, 2023. "The use of HYDRUS-2D to simulate intermittent Agricultural Managed Aquifer Recharge (Ag-MAR) in Alfalfa in the San Joaquin Valley," Agricultural Water Management, Elsevier, vol. 282(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jonathan O. Hernandez, 2022. "Ecophysiological Effects of Groundwater Drawdown on Phreatophytes: Research Trends during the Last Three Decades," Land, MDPI, vol. 11(11), pages 1-18, November.
    2. Le Duc Anh & Ho Huu Loc & Kim N. Irvine & Tran Thanh & Luong Quang Tuong, 2021. "The waterscape of groundwater exploitation for domestic uses in District 12, Ho Chi Minh City, Vietnam," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(5), pages 7652-7669, May.
    3. Zappa, Luca & Dari, Jacopo & Modanesi, Sara & Quast, Raphael & Brocca, Luca & De Lannoy, Gabrielle & Massari, Christian & Quintana-Seguí, Pere & Barella-Ortiz, Anais & Dorigo, Wouter, 2024. "Benefits and pitfalls of irrigation timing and water amounts derived from satellite soil moisture," Agricultural Water Management, Elsevier, vol. 295(C).
    4. Rathore, Vijay Singh & Nathawat, Narayan Singh & Bhardwaj, Seema & Yadav, Bhagirath Mal & Santra, Priyabrata & Kumar, Mahesh & Shekhawat, Ravindra Singh & Reager, Madan Lal & Yadav, Shish Ram & Lal, B, 2022. "Alternative cropping systems and optimized management practices for saving groundwater and enhancing economic and environmental sustainability," Agricultural Water Management, Elsevier, vol. 272(C).
    5. Hrozencik, R. Aaron, 2018. "Energy, Food, and Water; Electricity Cooperative Pricing and Groundwater Irrigation Decisions," 2018 Annual Meeting, August 5-7, Washington, D.C. 274322, Agricultural and Applied Economics Association.
    6. Xiukang Wang, 2022. "Managing Land Carrying Capacity: Key to Achieving Sustainable Production Systems for Food Security," Land, MDPI, vol. 11(4), pages 1-21, March.
    7. José Gescilam S. M. Uchôa & Paulo Tarso S. Oliveira & André S. Ballarin & Antônio A. Meira Neto & Didier Gastmans & Scott Jasechko & Ying Fan & Edson C. Wendland, 2024. "Widespread potential for streamflow leakage across Brazil," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    8. Madhumita Sahoo & Aman Kasot & Anirban Dhar & Amlanjyoti Kar, 2018. "On Predictability of Groundwater Level in Shallow Wells Using Satellite Observations," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(4), pages 1225-1244, March.
    9. Schmitt, Rafael Jan Pablo & Rosa, Lorenzo, 2024. "Dams for hydropower and irrigation: Trends, challenges, and alternatives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    10. Anna Boser & Kelly Caylor & Ashley Larsen & Madeleine Pascolini-Campbell & John T. Reager & Tamma Carleton, 2024. "Field-scale crop water consumption estimates reveal potential water savings in California agriculture," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    11. Sears, Louis S. & Lawell, C.Y. Cynthia Lin & Torres, Gerald & Walter, M. Todd, 2022. "Moment-based Markov Equilibrium Estimation of High-Dimension Dynamic Games: An Application to Groundwater Management in California," 2022 Annual Meeting, July 31-August 2, Anaheim, California 322187, Agricultural and Applied Economics Association.
    12. Kishore, Prabhat & Singh, Dharm Raj & Srivastava, Shivendra & Kumar, Pramod & Jha, Girish Kumar, 2021. "Impact of Subsoil Water Preservation Act, 2009 on Burgeoning Trend of Groundwater Depletion in Punjab, India," 2021 Conference, August 17-31, 2021, Virtual 315198, International Association of Agricultural Economists.
    13. Xin Deng & Lingzhi Zhang & Rong Xu & Miao Zeng & Qiang He & Dingde Xu & Yanbin Qi, 2022. "Do Cooperatives Affect Groundwater Protection? Evidence from Rural China," Agriculture, MDPI, vol. 12(7), pages 1-14, July.
    14. Lijuan Zhang & Jinxia Wang & Guangsheng Zhang & Qiuqiong Huang, 2016. "Impact of the methods of groundwater access on irrigation and crop yield in the North China Plain," China Agricultural Economic Review, Emerald Group Publishing Limited, vol. 8(4), pages 613-633, November.
    15. Lauffenburger, Zachary H. & Gurdak, Jason J. & Hobza, Chris & Woodward, Duane & Wolf, Cassandra, 2018. "Irrigated agriculture and future climate change effects on groundwater recharge, northern High Plains aquifer, USA," Agricultural Water Management, Elsevier, vol. 204(C), pages 69-80.
    16. Ellen M. Bruno & Richard J. Sexton, 2020. "The Gains from Agricultural Groundwater Trade and the Potential for Market Power: Theory and Application," American Journal of Agricultural Economics, John Wiley & Sons, vol. 102(3), pages 884-910, May.
    17. Nkuiya, Bruno, 2020. "Tradeoffs between costly capacity investment and risk of regime shift," Economic Modelling, Elsevier, vol. 91(C), pages 117-127.
    18. Peng Qi & Guangxin Zhang & Yi Jun Xu & Zhikun Xia & Ming Wang, 2019. "Response of Water Resources to Future Climate Change in a High-Latitude River Basin," Sustainability, MDPI, vol. 11(20), pages 1-21, October.
    19. Jie Zhu & Xiangyang Zhou & Jin Guo, 2023. "Sustainability of Agriculture: A Study of Digital Groundwater Supervision," Sustainability, MDPI, vol. 15(6), pages 1-15, March.
    20. Shahzeen Z. Attari & Kelsey Poinsatte-Jones & Kelsey Hinton, 2017. "Perceptions of water systems," Judgment and Decision Making, Society for Judgment and Decision Making, vol. 12(3), pages 314-327, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:267:y:2022:i:c:s0378377422000610. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.