IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-53987-8.html
   My bibliography  Save this article

Weathering influences the ice nucleation activity of microplastics

Author

Listed:
  • Philip Brahana

    (Louisiana State University)

  • Mingyi Zhang

    (Pacific Northwest National Laboratory)

  • Elias Nakouzi

    (Pacific Northwest National Laboratory)

  • Bhuvnesh Bharti

    (Louisiana State University)

Abstract

Microplastics are being increasingly detected in the atmosphere at altitudes relevant to mixed-phase cloud formation. However, the extent to which microplastics, along with their dynamic surface properties resulting from environmental weathering, could influence atmospheric microphysical processes remains largely unexplored. Here, through a series of ice nucleation experiments and droplet freezing assays, we highlight the capability of model polyethylene microplastics to induce heterogeneous ice nucleation via immersion freezing under atmospherically relevant conditions. We find that sunlight-induced weathering of the microplastic surface influences the structure of surface-bound water molecules and dictates the ice nucleation activity of the microplastics. Using polyethylene, polypropylene, polystyrene, and polyethylene terephthalate as models, we demonstrate that the ice nucleation ability of microplastics is intrinsically linked to their underlying chemistry. Our findings underscore the need to establish a connection between microplastics and atmospheric processes, as the behavior of microplastic pollutants in the atmosphere holds the potential to influence their environmental transport as well as atmospheric microphysical processes.

Suggested Citation

  • Philip Brahana & Mingyi Zhang & Elias Nakouzi & Bhuvnesh Bharti, 2024. "Weathering influences the ice nucleation activity of microplastics," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-53987-8
    DOI: 10.1038/s41467-024-53987-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-53987-8
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-53987-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. N. Evangeliou & H. Grythe & Z. Klimont & C. Heyes & S. Eckhardt & S. Lopez-Aparicio & A. Stohl, 2020. "Atmospheric transport is a major pathway of microplastics to remote regions," Nature Communications, Nature, vol. 11(1), pages 1-11, December.
    2. Jamie Woodward & Jiawei Li & James Rothwell & Rachel Hurley, 2021. "Acute riverine microplastic contamination due to avoidable releases of untreated wastewater," Nature Sustainability, Nature, vol. 4(9), pages 793-802, September.
    3. Martin Fitzner & Philipp Pedevilla & Angelos Michaelides, 2020. "Predicting heterogeneous ice nucleation with a data-driven approach," Nature Communications, Nature, vol. 11(1), pages 1-9, December.
    4. Qiqing Chen & Guitao Shi & Laura E. Revell & Jun Zhang & Chencheng Zuo & Danhe Wang & Eric C. Le Ru & Guangmei Wu & Denise M. Mitrano, 2023. "Long-range atmospheric transport of microplastics across the southern hemisphere," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Andrew J Tanentzap & Samuel Cottingham & Jérémy Fonvielle & Isobel Riley & Lucy M Walker & Samuel G Woodman & Danai Kontou & Christian M Pichler & Erwin Reisner & Laurent Lebreton, 2021. "Microplastics and anthropogenic fibre concentrations in lakes reflect surrounding land use," PLOS Biology, Public Library of Science, vol. 19(9), pages 1-18, September.
    2. Angelica Bianco & Monica Passananti, 2020. "Atmospheric Micro and Nanoplastics: An Enormous Microscopic Problem," Sustainability, MDPI, vol. 12(18), pages 1-17, September.
    3. Zexi Shen & Qiang Zhang & Vijay P. Singh & Yadu Pokhrel & Jianping Li & Chong-Yu Xu & Wenhuan Wu, 2022. "Drying in the low-latitude Atlantic Ocean contributed to terrestrial water storage depletion across Eurasia," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    4. Brian Charles Barr & Hrund Ólöf Andradóttir & Throstur Thorsteinsson & Sigurður Erlingsson, 2021. "Mitigation of Suspendable Road Dust in a Subpolar, Oceanic Climate," Sustainability, MDPI, vol. 13(17), pages 1-16, August.
    5. Isabel Goßmann & Dorte Herzke & Andreas Held & Janina Schulz & Vladimir Nikiforov & Christoph Georgi & Nikolaos Evangeliou & Sabine Eckhardt & Gunnar Gerdts & Oliver Wurl & Barbara M. Scholz-Böttcher, 2023. "Occurrence and backtracking of microplastic mass loads including tire wear particles in northern Atlantic air," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    6. Yu-Rong Liu & Marcel G. A. Heijden & Judith Riedo & Carlos Sanz-Lazaro & David J. Eldridge & Felipe Bastida & Eduardo Moreno-Jiménez & Xin-Quan Zhou & Hang-Wei Hu & Ji-Zheng He & José L. Moreno & Seba, 2023. "Soil contamination in nearby natural areas mirrors that in urban greenspaces worldwide," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    7. Yi-Fei Wang & Yan-Jie Liu & Yan-Mei Fu & Jia-Yang Xu & Tian-Lun Zhang & Hui-Ling Cui & Min Qiao & Matthias C. Rillig & Yong-Guan Zhu & Dong Zhu, 2024. "Microplastic diversity increases the abundance of antibiotic resistance genes in soil," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    8. Yanjun Meng & Kun Wang & Yuanyuan Lin, 2021. "The Role of Land Use Transition on Industrial Pollution Reduction in the Context of Innovation-Driven: The Case of 30 Provinces in China," Land, MDPI, vol. 10(4), pages 1-20, April.
    9. Binbin Chang & Lei Chen, 2021. "Land Economic Efficiency and Improvement of Environmental Pollution in the Process of Sustainable Urbanization: Case of Eastern China," Land, MDPI, vol. 10(8), pages 1-23, August.
    10. Hlynur Stefánsson & Mark Peternell & Matthias Konrad-Schmolke & Hrafnhildur Hannesdóttir & Einar Jón Ásbjörnsson & Erik Sturkell, 2021. "Microplastics in Glaciers: First Results from the Vatnajökull Ice Cap," Sustainability, MDPI, vol. 13(8), pages 1-11, April.
    11. Miner, Patrick & Smith, Barbara M. & Jani, Anant & McNeill, Geraldine & Gathorne-Hardy, Alfred, 2024. "Car harm: A global review of automobility's harm to people and the environment," Journal of Transport Geography, Elsevier, vol. 115(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-53987-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.