IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v10y2021i4p353-d527809.html
   My bibliography  Save this article

The Role of Land Use Transition on Industrial Pollution Reduction in the Context of Innovation-Driven: The Case of 30 Provinces in China

Author

Listed:
  • Yanjun Meng

    (School of Economics, Sichuan University, Chengdu 610064, China)

  • Kun Wang

    (Department of Accounting and Corporate Finance, Business School, Sichuan University, Chengdu 610064, China)

  • Yuanyuan Lin

    (Department of International Economics and Trade, Finance and Economics School, Jimei University, Xiamen 361031, China)

Abstract

With the world calling for environmental protection, China has to follow an innovation-driven development path in order to achieve its own high-quality and sustainable development. During this period, the problem of inefficient land use resulting from rapid progress in urbanisation is difficult to ignore. This study uses data from 30 provinces in mainland China to analyse the environmental protection effects of land use transition towards innovation-driven development, using spatial econometric models and entropy method. The results show that the innovation-oriented land use transition in four dimensions, human capital, material capital, urban function and government, is conducive to reducing industrial pollution emissions in the region, but this effect does not have a spillover effect. The results of this study provide some insights into the “triple-win” (environmental protection, innovation and land-use optimisation) approach to economic development in China.

Suggested Citation

  • Yanjun Meng & Kun Wang & Yuanyuan Lin, 2021. "The Role of Land Use Transition on Industrial Pollution Reduction in the Context of Innovation-Driven: The Case of 30 Provinces in China," Land, MDPI, vol. 10(4), pages 1-20, April.
  • Handle: RePEc:gam:jlands:v:10:y:2021:i:4:p:353-:d:527809
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/10/4/353/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/10/4/353/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Romer, Paul M, 1986. "Increasing Returns and Long-run Growth," Journal of Political Economy, University of Chicago Press, vol. 94(5), pages 1002-1037, October.
    2. de Bruyn, S. M. & van den Bergh, J. C. J. M. & Opschoor, J. B., 1998. "Economic growth and emissions: reconsidering the empirical basis of environmental Kuznets curves," Ecological Economics, Elsevier, vol. 25(2), pages 161-175, May.
    3. Han, Li & Kung, James Kai-Sing, 2015. "Fiscal incentives and policy choices of local governments: Evidence from China," Journal of Development Economics, Elsevier, vol. 116(C), pages 89-104.
    4. Brian R. Copeland & M. Scott Taylor, 2004. "Trade, Growth, and the Environment," Journal of Economic Literature, American Economic Association, vol. 42(1), pages 7-71, March.
    5. Managi, Shunsuke & Hibiki, Akira & Tsurumi, Tetsuya, 2009. "Does trade openness improve environmental quality?," Journal of Environmental Economics and Management, Elsevier, vol. 58(3), pages 346-363, November.
    6. Glaeser, Edward L. & Kahn, Matthew E., 2010. "The greenness of cities: Carbon dioxide emissions and urban development," Journal of Urban Economics, Elsevier, vol. 67(3), pages 404-418, May.
    7. N. Evangeliou & H. Grythe & Z. Klimont & C. Heyes & S. Eckhardt & S. Lopez-Aparicio & A. Stohl, 2020. "Atmospheric transport is a major pathway of microplastics to remote regions," Nature Communications, Nature, vol. 11(1), pages 1-11, December.
    8. Jing Huang & Dongqian Xue, 2019. "Study on Temporal and Spatial Variation Characteristics and Influencing Factors of Land Use Efficiency in Xi’an, China," Sustainability, MDPI, vol. 11(23), pages 1-16, November.
    9. Zeng, Dao-Zhi & Zhao, Laixun, 2009. "Pollution havens and industrial agglomeration," Journal of Environmental Economics and Management, Elsevier, vol. 58(2), pages 141-153, September.
    10. Mundlak, Yair, 1978. "On the Pooling of Time Series and Cross Section Data," Econometrica, Econometric Society, vol. 46(1), pages 69-85, January.
    11. Luc Anselin, 2001. "Spatial Effects in Econometric Practice in Environmental and Resource Economics," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 83(3), pages 705-710.
    12. Cole, Matthew A., 2004. "Trade, the pollution haven hypothesis and the environmental Kuznets curve: examining the linkages," Ecological Economics, Elsevier, vol. 48(1), pages 71-81, January.
    13. Kuznets, Simon, 1973. "Modern Economic Growth: Findings and Reflections," American Economic Review, American Economic Association, vol. 63(3), pages 247-258, June.
    14. Judith M. Dean & Mary E. Lovely & Hua Wang, 2017. "Are foreign investors attracted to weak environmental regulations? Evaluating the evidence from China," World Scientific Book Chapters, in: Mary E Lovely (ed.), International Economic Integration and Domestic Performance, chapter 9, pages 155-167, World Scientific Publishing Co. Pte. Ltd..
    15. Xuan Yu & Manhong Shen & Weiteng Shen & Xiao Zhang, 2020. "Effects of Land Urbanization on Smog Pollution in China: Estimation of Spatial Autoregressive Panel Data Models," Land, MDPI, vol. 9(9), pages 1-16, September.
    16. Jaffe, Adam B, 1989. "Real Effects of Academic Research," American Economic Review, American Economic Association, vol. 79(5), pages 957-970, December.
    17. Ozturk, Ilhan & Acaravci, Ali, 2013. "The long-run and causal analysis of energy, growth, openness and financial development on carbon emissions in Turkey," Energy Economics, Elsevier, vol. 36(C), pages 262-267.
    18. Ghosh, Sajal, 2010. "Examining carbon emissions economic growth nexus for India: A multivariate cointegration approach," Energy Policy, Elsevier, vol. 38(6), pages 3008-3014, June.
    19. Xuanming Ji & Kun Wang & Tao Ji & Yihua Zhang & Kun Wang, 2020. "Coupling Analysis of Urban Land Use Benefits: A Case Study of Xiamen City," Land, MDPI, vol. 9(5), pages 1-20, May.
    20. Yu, Junqing & Zhou, Kaile & Yang, Shanlin, 2019. "Land use efficiency and influencing factors of urban agglomerations in China," Land Use Policy, Elsevier, vol. 88(C).
    21. Hans Grönqvist & J. Peter Nilsson & Per-Olof Robling, 2020. "Understanding How Low Levels of Early Lead Exposure Affect Children’s Life Trajectories," Journal of Political Economy, University of Chicago Press, vol. 128(9), pages 3376-3433.
    22. Tian, Fenghao & Li, Mingyu & Han, Xulong & Liu, Hui & Mo, Boxian, 2020. "A Production–Living–Ecological Space Model for Land-Use Optimisation: A case study of the core Tumen River region in China," Ecological Modelling, Elsevier, vol. 437(C).
    23. Bottazzi, Laura & Peri, Giovanni, 2003. "Innovation and spillovers in regions: Evidence from European patent data," European Economic Review, Elsevier, vol. 47(4), pages 687-710, August.
    24. Brunnermeier, Smita B. & Cohen, Mark A., 2003. "Determinants of environmental innovation in US manufacturing industries," Journal of Environmental Economics and Management, Elsevier, vol. 45(2), pages 278-293, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sidong Zhao & Yiran Yan & Jing Han, 2021. "Industrial Land Change in Chinese Silk Road Cities and Its Influence on Environments," Land, MDPI, vol. 10(8), pages 1-30, July.
    2. Fengjie Gao & Wei Yang & Si Zhang & Xiaohui Xin & Jun Zhou & Guoming Du, 2023. "An Integrated Approach to Constructing Ecological Security Pattern in an Urbanization and Agricultural Intensification Area in Northeast China," Land, MDPI, vol. 12(2), pages 1-22, January.
    3. Binbin Chang & Lei Chen, 2021. "Land Economic Efficiency and Improvement of Environmental Pollution in the Process of Sustainable Urbanization: Case of Eastern China," Land, MDPI, vol. 10(8), pages 1-23, August.
    4. Zicheng Wang & Xiaoliang Zhou, 2023. "Can Innovation-Driven Policy Reduce China’s Carbon Emission Intensity?—A Quasi-Natural Experiment Based on the National Innovative City Pilot Policy," Sustainability, MDPI, vol. 15(5), pages 1-17, March.
    5. Lan Song & Zhiji Huang, 2022. "Exploring the Effects of Industrial Land Transfer on Urban Air Quality Using a Geographically and Temporally Weighted Regression Model," IJERPH, MDPI, vol. 20(1), pages 1-20, December.
    6. Ning Xu & Desen Zhao & Wenjie Zhang & He Zhang & Wanxu Chen & Min Ji & Ming Liu, 2022. "Innovation-Driven Development and Urban Land Low-Carbon Use Efficiency: A Policy Assessment from China," Land, MDPI, vol. 11(10), pages 1-21, September.
    7. Longji Zeng & Yuandi Wang & Yajuan Deng, 2022. "How Land Transactions Affect Carbon Emissions: Evidence from China," Land, MDPI, vol. 11(5), pages 1-25, May.
    8. Jihong Li & Kaiming Li & Rongxu Qiu, 2022. "The Suburbanization and Revitalization of Industrial Land in Shanghai, China," Sustainability, MDPI, vol. 14(12), pages 1-18, June.
    9. Le Yang & Jiahao Zhang & Yufeng Zhang, 2021. "Environmental Regulations and Corporate Green Innovation in China: The Role of City Leaders’ Promotion Pressure," IJERPH, MDPI, vol. 18(15), pages 1-21, July.
    10. Maciej Nowak & Giancarlo Cotella & Przemysław Śleszyński, 2021. "The Legal, Administrative, and Governance Frameworks of Spatial Policy, Planning, and Land Use: Interdependencies, Barriers, and Directions of Change," Land, MDPI, vol. 10(11), pages 1-9, October.
    11. Bin Duan & Xuanming Ji, 2021. "Can Carbon Finance Optimize Land Use Efficiency? The Example of China’s Carbon Emissions Trading Policy," Land, MDPI, vol. 10(9), pages 1-18, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Binbin Chang & Lei Chen, 2021. "Land Economic Efficiency and Improvement of Environmental Pollution in the Process of Sustainable Urbanization: Case of Eastern China," Land, MDPI, vol. 10(8), pages 1-23, August.
    2. Octavio Fernández-Amador & Joseph F. Francois & Doris A. Oberdabernig & Patrick Tomberger, 2020. "Economic growth, sectoral structures, and environmental methane footprints," Applied Economics, Taylor & Francis Journals, vol. 52(13), pages 1460-1475, March.
    3. Le Hoang Phong, 2019. "Globalization, Financial Development, and Environmental Degradation in the Presence of Environmental Kuznets Curve: Evidence from ASEAN-5 Countries," International Journal of Energy Economics and Policy, Econjournals, vol. 9(2), pages 40-50.
    4. Shahbaz, Muhammad & Haouas, Ilham & Hoang, Thi Hong Van, 2019. "Economic growth and environmental degradation in Vietnam: Is the environmental Kuznets curve a complete picture?," Emerging Markets Review, Elsevier, vol. 38(C), pages 197-218.
    5. Myriam BEN SAAD, 2017. "L’effet de la complexité économique sur la pollution de l’air : une autre approche de la courbe environnementale de Kuznets," Region et Developpement, Region et Developpement, LEAD, Universite du Sud - Toulon Var, vol. 46, pages 21-41.
    6. Ben Youssef, Adel & Hammoudeh, Shawkat & Omri, Anis, 2016. "Simultaneity modeling analysis of the environmental Kuznets curve hypothesis," Energy Economics, Elsevier, vol. 60(C), pages 266-274.
    7. Fernández-Amador, Octavio & Francois, Joseph & Oberdabernig, Doris & Tomberger, Patrick, 2018. "The methane footprint of nations: Evidence from global panel data," Papers 1102, World Trade Institute.
    8. Mounir Belloumi & Atef Alshehry, 2020. "The Impact of International Trade on Sustainable Development in Saudi Arabia," Sustainability, MDPI, vol. 12(13), pages 1-18, July.
    9. Antoine Dechezleprêtre & Misato Sato, 2017. "The Impacts of Environmental Regulations on Competitiveness," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 11(2), pages 183-206.
    10. Wang, Jing & Wan, Guanghua & Wang, Chen, 2019. "Participation in GVCs and CO2 emissions," Energy Economics, Elsevier, vol. 84(C).
    11. Matthias Firgo & Peter Mayerhofer, 2015. "Wissens-Spillovers und regionale Entwicklung - welche strukturpolitische Ausrichtung optimiert des Wachstum?," Working Paper Reihe der AK Wien - Materialien zu Wirtschaft und Gesellschaft 144, Kammer für Arbeiter und Angestellte für Wien, Abteilung Wirtschaftswissenschaft und Statistik.
    12. Sebri, Maamar, 2009. "La Zone Méditerranéenne Face à la Pollution de L’air : Une Investigation Econométrique [The Mediterranean Zone in front of Air pollution: an Econometric Investigation]," MPRA Paper 32382, University Library of Munich, Germany.
    13. Mina Baliamoune-Lutz, 2017. "Trade and Environmental Quality in African Countries: Do Institutions Matter?," Eastern Economic Journal, Palgrave Macmillan;Eastern Economic Association, vol. 43(1), pages 155-172, January.
    14. Ernest Miguélez & Rosina Moreno, 2013. "Do Labour Mobility and Technological Collaborations Foster Geographical Knowledge Diffusion? The Case of European Regions," Growth and Change, Wiley Blackwell, vol. 44(2), pages 321-354, June.
    15. Shahbaz, Muhammad & Nasreen, Samia & Ahmed, Khalid & Hammoudeh, Shawkat, 2017. "Trade openness–carbon emissions nexus: The importance of turning points of trade openness for country panels," Energy Economics, Elsevier, vol. 61(C), pages 221-232.
    16. Alexandru FOTIA & Cezar TECLEAN, 2019. "The Innovation Efficiency In Central And Eastern Europe – An Input-Output Comparative Analysis Between Czech Republic, Hungary, Poland And Romania," EURINT, Centre for European Studies, Alexandru Ioan Cuza University, vol. 6, pages 269-287.
    17. Richard T. Carson, 2010. "The Environmental Kuznets Curve: Seeking Empirical Regularity and Theoretical Structure," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 4(1), pages 3-23, Winter.
    18. Shahbaz, Muhammad & Nasreen, Samia & Abbas, Faisal & Anis, Omri, 2015. "Does foreign direct investment impede environmental quality in high-, middle-, and low-income countries?," Energy Economics, Elsevier, vol. 51(C), pages 275-287.
    19. Torres-Brito, David Israel & Cruz-Aké, Salvador & Venegas-Martínez, Francisco, 2023. "Impacto de los contaminantes por gases de efecto invernadero en el crecimiento económico en 86 países (1990-2019): Sobre la curva inversa de Kuznets [Impact of the Effect of Greenhouse Gas Pollutan," MPRA Paper 119031, University Library of Munich, Germany.
    20. Valeria Costantini & Chiara Martini, 2010. "A Modified Environmental Kuznets Curve for sustainable development assessment using panel data," International Journal of Global Environmental Issues, Inderscience Enterprises Ltd, vol. 10(1/2), pages 84-122.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:10:y:2021:i:4:p:353-:d:527809. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.